Burgess Selena G, Messiha Hanan Latif, Katona Gergely, Rigby Stephen E J, Leys David, Scrutton Nigel S
Department of Biochemistry, University of Leicester, Leicester LE1 9HN, UK.
Biochemistry. 2008 May 6;47(18):5168-81. doi: 10.1021/bi800127d. Epub 2008 Apr 12.
We have used multiple solution state techniques and crystallographic analysis to investigate the importance of a putative transient interaction formed between Arg-alpha237 in electron transferring flavoprotein (ETF) and Tyr-442 in trimethylamine dehydrogenase (TMADH) in complex assembly, electron transfer, and structural imprinting of ETF by TMADH. We have isolated four mutant forms of ETF altered in the identity of the residue at position 237 (alphaR237A, alphaR237K, alphaR237C, and alphaR237E) and with each form studied electron transfer from TMADH to ETF, investigated the reduction potentials of the bound ETF cofactor, and analyzed complex formation. We show that mutation of Arg-alpha237 substantially destabilizes the semiquinone couple of the bound FAD and impedes electron transfer from TMADH to ETF. Crystallographic structures of the mutant ETF proteins indicate that mutation does not perturb the overall structure of ETF, but leads to disruption of an electrostatic network at an ETF domain boundary that likely affects the dynamic properties of ETF in the crystal and in solution. We show that Arg-alpha237 is required for TMADH to structurally imprint the as-purified semiquinone form of wild-type ETF and that the ability of TMADH to facilitate this structural reorganization is lost following (i) redox cycling of ETF, or simple conversion to the oxidized form, and (ii) mutagenesis of Arg-alpha237. We discuss this result in light of recent apparent conflict in the literature relating to the structural imprinting of wild-type ETF. Our studies support a mechanism of electron transfer by conformational sampling as advanced from our previous analysis of the crystal structure of the TMADH-2ETF complex [Leys, D. , Basran, J. , Sutcliffe, M. J., and Scrutton, N. S. (2003) Nature Struct. Biol. 10, 219-225] and point to a key role for the Tyr-442 (TMADH) and Arg-alpha237 (ETF) residue pair in transiently stabilizing productive electron transfer configurations. Our work also points to the importance of Arg-alpha237 in controlling the thermodynamics of electron transfer, the dynamics of ETF, and the protection of reducing equivalents following disassembly of the TMADH-2ETF complex.
我们运用了多种溶液状态技术和晶体学分析方法,来研究电子传递黄素蛋白(ETF)中的精氨酸-α237与三甲胺脱氢酶(TMADH)中的酪氨酸-442之间形成的假定瞬时相互作用,在复合物组装、电子传递以及TMADH对ETF的结构印记方面的重要性。我们分离出了四种ETF突变形式,其237位残基的身份发生了改变(αR237A、αR237K、αR237C和αR237E),并对每种形式研究了从TMADH到ETF的电子传递,研究了结合的ETF辅因子的还原电位,并分析了复合物的形成。我们发现,精氨酸-α237的突变极大地破坏了结合的FAD的半醌对的稳定性,并阻碍了从TMADH到ETF的电子传递。突变的ETF蛋白的晶体结构表明,突变并未扰乱ETF的整体结构,但导致了ETF结构域边界处静电网络的破坏,这可能影响了ETF在晶体和溶液中的动态特性。我们发现,TMADH对野生型ETF纯化后的半醌形式进行结构印记需要精氨酸-α237,并且在以下情况发生后,TMADH促进这种结构重组的能力丧失:(i)ETF的氧化还原循环,或简单地转化为氧化形式;(ii)精氨酸-α237的诱变。我们根据最近文献中关于野生型ETF结构印记的明显冲突来讨论这一结果。我们的研究支持了一种通过构象采样进行电子传递的机制,这是基于我们之前对TMADH-2ETF复合物晶体结构的分析得出的[Leys, D., Basran, J., Sutcliffe, M. J., and Scrutton, N. S. (2003) Nature Struct. Biol. 10, 219 - 225],并指出酪氨酸-442(TMADH)和精氨酸-α237(ETF)残基对在瞬时稳定有效的电子传递构型中起关键作用。我们的工作还指出了精氨酸-α237在控制电子传递的热力学、ETF的动力学以及TMADH-2ETF复合物解体后还原当量的保护方面的重要性。