Department of Chemistry, University of Kentucky, Lexington, Kentucky, USA.
Department of Chemistry, University of Kentucky, Lexington, Kentucky, USA.
J Biol Chem. 2022 Apr;298(4):101733. doi: 10.1016/j.jbc.2022.101733. Epub 2022 Feb 15.
Bifurcating electron transfer flavoproteins (Bf ETFs) are important redox enzymes that contain two flavin adenine dinucleotide (FAD) cofactors, with contrasting reactivities and complementary roles in electron bifurcation. However, for both the "electron transfer" (ET) and the "bifurcating" (Bf) FADs, the only charged amino acid within 5 Å of the flavin is a conserved arginine (Arg) residue. To understand how the two sites produce different reactivities utilizing the same residue, we investigated the consequences of replacing each of the Arg residues with lysine, glutamine, histidine, or alanine. We show that absence of a positive charge in the ET site diminishes accumulation of the anionic semiquinone (ASQ) that enables the ET flavin to act as a single electron carrier, due to depression of the oxidized versus. ASQ reduction midpoint potential, E°. Perturbation of the ET site also affected the remote Bf site, whereas abrogation of Bf FAD binding accelerated chemical modification of the ET flavin. In the Bf site, removal of the positive charge impaired binding of FAD or AMP, resulting in unstable protein. Based on pH dependence, we propose that the Bf site Arg interacts with the phosphate(s) of Bf FAD or AMP, bridging the domain interface via a conserved peptide loop ("zipper") and favoring nucleotide binding. We further propose a model that rationalizes conservation of the Bf site Arg even in non-Bf ETFs, as well as AMP's stabilizing role in the latter, and provides a mechanism for coupling Bf flavin redox changes to domain-scale motion.
分叉电子转移黄素蛋白(Bifurcating electron transfer flavoproteins,Bf ETFs)是重要的氧化还原酶,包含两个黄素腺嘌呤二核苷酸(flavin adenine dinucleotide,FAD)辅因子,其电子分叉具有不同的反应性和互补作用。然而,对于“电子转移”(electron transfer,ET)和“分叉”(bifurcating,Bf)FAD 来说,距离黄素 5 Å 内唯一带电荷的氨基酸都是保守的精氨酸(arginine,Arg)残基。为了了解两个位点如何利用相同的残基产生不同的反应性,我们研究了用赖氨酸(lysine)、谷氨酰胺(glutamine)、组氨酸(histidine)或丙氨酸(alanine)替换每个 Arg 残基的后果。我们表明,ET 位点不带正电荷会降低阴离子半醌(anionic semiquinone,ASQ)的积累,从而使 ET 黄素能够作为单电子载体,这是由于氧化态与 ASQ 还原中点电位(E°)的降低所致。ET 位点的扰动也会影响远程 Bf 位点,而 Bf FAD 结合的消除则加速了 ET 黄素的化学修饰。在 Bf 位点,去除正电荷会损害 FAD 或 AMP 的结合,导致蛋白质不稳定。基于 pH 依赖性,我们提出 Bf 位点的 Arg 与 Bf FAD 或 AMP 的磷酸盐相互作用,通过保守的肽环(“zipper”)桥接结构域界面,并有利于核苷酸结合。我们进一步提出了一个模型,该模型解释了为什么 Bf 位点的 Arg 即使在非 Bf ETFs 中也被保守,以及 AMP 在后者中的稳定作用,并提供了一种将 Bf 黄素氧化还原变化与域尺度运动偶联的机制。