Suppr超能文献

可变形基质上细胞粘着斑的动力学:对细胞力显微镜的影响

Dynamics of cellular focal adhesions on deformable substrates: consequences for cell force microscopy.

作者信息

Nicolas Alice, Besser Achim, Safran Samuel A

机构信息

Laboratoire de Physique de la Matière Condensée, Université de Nice-CNRS, France.

出版信息

Biophys J. 2008 Jul;95(2):527-39. doi: 10.1529/biophysj.107.127399. Epub 2008 Apr 11.

Abstract

Cell focal adhesions are micrometer-sized aggregates of proteins that anchor the cell to the extracellular matrix. Within the cell, these adhesions are connected to the contractile, actin cytoskeleton; this allows the adhesions to transmit forces to the surrounding matrix and makes the adhesion assembly sensitive to the rigidity of their environment. In this article, we predict the dynamics of focal adhesions as a function of the rigidity of the substrate. We generalize previous theories and include the fact that the dynamics of proteins that adsorb to adhesions are also driven by their coupling to cell contractility and the deformation of the matrix. We predict that adhesions reach a finite size that is proportional to the elastic compliance of the substrate, on a timescale that also scales with the compliance: focal adhesions quickly reach a relatively small, steady-state size on soft materials. However, their apparent sliding is not sensitive to the rigidity of the substrate. We also suggest some experimental probes of these ideas and discuss the nature of information that can be extracted from cell force microscopy on deformable substrates.

摘要

细胞粘着斑是将细胞锚定到细胞外基质的微米级蛋白质聚集体。在细胞内部,这些粘着斑与收缩性的肌动蛋白细胞骨架相连;这使得粘着斑能够将力传递到周围的基质,并使粘着斑组装对其环境的刚性敏感。在本文中,我们预测粘着斑的动力学作为底物刚性的函数。我们推广了先前的理论,并纳入了这样一个事实,即吸附到粘着斑上的蛋白质的动力学也受到它们与细胞收缩性和基质变形的耦合驱动。我们预测粘着斑会达到一个与底物的弹性顺应性成正比的有限大小,在一个也与顺应性成比例的时间尺度上:粘着斑在软材料上会迅速达到相对较小的稳态大小。然而,它们明显的滑动对底物的刚性不敏感。我们还提出了一些对这些观点的实验探测方法,并讨论了可以从可变形底物上的细胞力显微镜中提取的信息的性质。

相似文献

1
Dynamics of cellular focal adhesions on deformable substrates: consequences for cell force microscopy.
Biophys J. 2008 Jul;95(2):527-39. doi: 10.1529/biophysj.107.127399. Epub 2008 Apr 11.
2
Force-induced adsorption and anisotropic growth of focal adhesions.
Biophys J. 2006 May 15;90(10):3469-84. doi: 10.1529/biophysj.105.074377. Epub 2006 Mar 2.
3
Limitation of cell adhesion by the elasticity of the extracellular matrix.
Biophys J. 2006 Jul 1;91(1):61-73. doi: 10.1529/biophysj.105.077115. Epub 2006 Mar 31.
4
Cell mechanosensitivity controls the anisotropy of focal adhesions.
Proc Natl Acad Sci U S A. 2004 Aug 24;101(34):12520-5. doi: 10.1073/pnas.0403539101. Epub 2004 Aug 16.
6
Focal adhesions as mechanosensors: the two-spring model.
Biosystems. 2006 Feb-Mar;83(2-3):225-32. doi: 10.1016/j.biosystems.2005.05.019. Epub 2005 Oct 19.
7
Traction force microscopy for understanding cellular mechanotransduction.
BMB Rep. 2020 Feb;53(2):74-81. doi: 10.5483/BMBRep.2020.53.2.308.
8
Nucleation and decay initiation are the stiffness-sensitive phases of focal adhesion maturation.
Biophys J. 2011 Dec 21;101(12):2919-28. doi: 10.1016/j.bpj.2011.11.010. Epub 2011 Dec 20.
9
Substrate, focal adhesions, and actin filaments: a mechanical unit with a weak spot for mechanosensitive proteins.
J Phys Condens Matter. 2010 May 19;22(19):194109. doi: 10.1088/0953-8984/22/19/194109. Epub 2010 Apr 26.
10
4D Force Detection of Cell Adhesion and Contractility.
Nano Lett. 2023 Apr 12;23(7):2467-2475. doi: 10.1021/acs.nanolett.2c03733. Epub 2023 Mar 28.

引用本文的文献

1
Stiff Extracellular Matrix Promotes Invasive Behaviors of Trophoblast Cells.
Bioengineering (Basel). 2023 Mar 21;10(3):384. doi: 10.3390/bioengineering10030384.
3
4
The bioenergetics of integrin-based adhesion, from single molecule dynamics to stability of macromolecular complexes.
Comput Struct Biotechnol J. 2020 Feb 13;18:393-416. doi: 10.1016/j.csbj.2020.02.003. eCollection 2020.
5
Exploring cardiac form and function: A length-scale computational biology approach.
Wiley Interdiscip Rev Syst Biol Med. 2020 Mar;12(2):e1470. doi: 10.1002/wsbm.1470. Epub 2019 Dec 2.
9
A Chemomechanical Model of Matrix and Nuclear Rigidity Regulation of Focal Adhesion Size.
Biophys J. 2015 Nov 3;109(9):1807-17. doi: 10.1016/j.bpj.2015.08.048.
10
A Review of Cell Adhesion Studies for Biomedical and Biological Applications.
Int J Mol Sci. 2015 Aug 5;16(8):18149-84. doi: 10.3390/ijms160818149.

本文引用的文献

1
Cell force microscopy on elastic layers of finite thickness.
Biophys J. 2007 Nov 1;93(9):3314-23. doi: 10.1529/biophysj.107.111328. Epub 2007 Jul 27.
2
Cell mechanics: integrating cell responses to mechanical stimuli.
Annu Rev Biomed Eng. 2007;9:1-34. doi: 10.1146/annurev.bioeng.9.060906.151927.
3
Differential transmission of actin motion within focal adhesions.
Science. 2007 Jan 5;315(5808):111-5. doi: 10.1126/science.1135085.
4
Measuring cell forces by a photoelastic method.
Biophys J. 2007 Mar 15;92(6):2255-61. doi: 10.1529/biophysj.106.088849. Epub 2006 Dec 22.
5
Matrix elasticity directs stem cell lineage specification.
Cell. 2006 Aug 25;126(4):677-89. doi: 10.1016/j.cell.2006.06.044.
6
Limitation of cell adhesion by the elasticity of the extracellular matrix.
Biophys J. 2006 Jul 1;91(1):61-73. doi: 10.1529/biophysj.105.077115. Epub 2006 Mar 31.
7
Force-induced adsorption and anisotropic growth of focal adhesions.
Biophys J. 2006 May 15;90(10):3469-84. doi: 10.1529/biophysj.105.074377. Epub 2006 Mar 2.
8
Focal adhesion size controls tension-dependent recruitment of alpha-smooth muscle actin to stress fibers.
J Cell Biol. 2006 Jan 16;172(2):259-68. doi: 10.1083/jcb.200506179. Epub 2006 Jan 9.
9
Mechanical forces alter zyxin unbinding kinetics within focal adhesions of living cells.
J Cell Physiol. 2006 Apr;207(1):187-94. doi: 10.1002/jcp.20550.
10
Analyzing focal adhesion structure by atomic force microscopy.
J Cell Sci. 2005 Nov 15;118(Pt 22):5315-23. doi: 10.1242/jcs.02653. Epub 2005 Nov 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验