Suppr超能文献

粘着斑大小的基质和核刚性调节的化学机械模型。

A Chemomechanical Model of Matrix and Nuclear Rigidity Regulation of Focal Adhesion Size.

作者信息

Cao Xuan, Lin Yuan, Driscoll Tristian P, Franco-Barraza Janusz, Cukierman Edna, Mauck Robert L, Shenoy Vivek B

机构信息

Department of Materials Science and Engineering, School of Engineering and Applied Science, The University of Pennsylvania, Philadelphia, Pennsylvania.

Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China.

出版信息

Biophys J. 2015 Nov 3;109(9):1807-17. doi: 10.1016/j.bpj.2015.08.048.

Abstract

In this work, a chemomechanical model describing the growth dynamics of cell-matrix adhesion structures (i.e., focal adhesions (FAs)) is developed. We show that there are three regimes for FA evolution depending on their size. Specifically, nascent adhesions with initial lengths below a critical value that are yet to engage in actin fibers will dissolve, whereas bigger ones will grow into mature FAs with a steady state size. In adhesions where growth surpasses the steady state size, disassembly will occur until their sizes are reduced to the equilibrium state. This finding arises from the fact that polymerization of adhesion proteins is force-dependent. Under actomyosin contraction, individual integrin bonds within small FAs (i.e., nascent adhesions or focal complexes) must transmit higher loads while the phenomenon of stress concentration occurs at the edge of large adhesion patches. As such, an effective stiffness of the FA-extracellular matrix complex that is either too small or too large will be relatively low, resulting in a limited actomyosin pulling force developed at the edge that is insufficient to prevent disassembly. Furthermore, it is found that a stiffer extracellular matrix and/or nucleus, as well as a stronger chemomechanical feedback, will induce larger adhesions along with a higher level of contraction force. Interestingly, switching the extracellular side from an elastic half-space, corresponding to some widely used in vitro gel substrates, to a one-dimensional fiber (as in the case of cells anchoring to a fibrous scaffold in vivo) does not qualitative change these conclusions. Our model predictions are in good agreement with a variety of experimental observations obtained in this study as well as those reported in the literature. Furthermore, this new model, to our knowledge, provides a framework with which to understand how both intracellular and extracellular perturbations lead to changes in adhesion structure number and size.

摘要

在这项工作中,我们建立了一个化学机械模型来描述细胞-基质粘附结构(即粘着斑(FAs))的生长动力学。我们发现,根据粘着斑的大小,其演化存在三种状态。具体而言,初始长度低于临界值且尚未与肌动蛋白纤维结合的新生粘着斑会溶解,而较大的粘着斑会生长为具有稳态大小的成熟粘着斑。当粘着斑的生长超过稳态大小时,就会发生分解,直到其大小减小到平衡状态。这一发现源于粘附蛋白的聚合是力依赖的这一事实。在肌动球蛋白收缩作用下,小粘着斑(即新生粘着斑或粘着斑复合体)内的单个整合素键必须传递更高的负荷,而在大粘附斑边缘会出现应力集中现象。因此,粘着斑-细胞外基质复合体的有效刚度过小或过大时,其相对较低,导致在边缘产生的肌动球蛋白拉力有限,不足以防止分解。此外,研究发现,更硬的细胞外基质和/或细胞核,以及更强的化学机械反馈,会诱导形成更大的粘着斑以及更高水平的收缩力。有趣的是,将细胞外一侧从对应于一些广泛使用的体外凝胶基质的弹性半空间切换到一维纤维(如细胞在体内锚定到纤维支架的情况)并不会定性地改变这些结论。我们的模型预测与本研究中获得的各种实验观察结果以及文献中报道的结果高度一致。此外,据我们所知,这个新模型提供了一个框架,用以理解细胞内和细胞外的扰动如何导致粘附结构数量和大小的变化。

相似文献

2
Assembly and mechanosensory function of focal adhesions: experiments and models.粘着斑的组装及机械感受功能:实验与模型
Eur J Cell Biol. 2006 Apr;85(3-4):165-73. doi: 10.1016/j.ejcb.2005.11.001. Epub 2005 Dec 19.
4
Focal adhesions as mechanosensors: the two-spring model.作为机械传感器的粘着斑:双弹簧模型
Biosystems. 2006 Feb-Mar;83(2-3):225-32. doi: 10.1016/j.biosystems.2005.05.019. Epub 2005 Oct 19.
6
Force-Dependent Regulation of Talin-KANK1 Complex at Focal Adhesions.力依赖性调节粘着斑处的 talin-KANK1 复合物。
Nano Lett. 2019 Sep 11;19(9):5982-5990. doi: 10.1021/acs.nanolett.9b01732. Epub 2019 Aug 13.
7
Model of integrin-mediated cell adhesion strengthening.整合素介导的细胞黏附增强模型。
J Biomech. 2007;40(6):1301-9. doi: 10.1016/j.jbiomech.2006.05.018. Epub 2006 Jul 7.
8
Computational model of integrin adhesion elongation under an actin fiber.整合素黏附延伸的肌动蛋白纤维下的计算模型。
PLoS Comput Biol. 2023 Jul 6;19(7):e1011237. doi: 10.1371/journal.pcbi.1011237. eCollection 2023 Jul.
9
Force loading explains spatial sensing of ligands by cells.力加载解释了细胞对配体的空间感知。
Nature. 2017 Dec 14;552(7684):219-224. doi: 10.1038/nature24662. Epub 2017 Dec 6.
10
Focal adhesions as mechanosensors: a physical mechanism.作为机械传感器的粘着斑:一种物理机制。
Proc Natl Acad Sci U S A. 2005 Aug 30;102(35):12383-8. doi: 10.1073/pnas.0500254102. Epub 2005 Aug 19.

引用本文的文献

1
Active viscoelastic models for cell and tissue mechanics.用于细胞和组织力学的主动粘弹性模型。
R Soc Open Sci. 2024 Apr 24;11(4):231074. doi: 10.1098/rsos.231074. eCollection 2024 Apr.
9

本文引用的文献

7
Focal adhesion size uniquely predicts cell migration.粘着斑大小能独特地预测细胞迁移。
FASEB J. 2013 Apr;27(4):1351-61. doi: 10.1096/fj.12-220160. Epub 2012 Dec 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验