Suppr超能文献

利用组合分子生物学技术对具有新型环替换的苏云金芽孢杆菌Cry蛋白的特性进行研究。

Investigating the properties of Bacillus thuringiensis Cry proteins with novel loop replacements created using combinatorial molecular biology.

作者信息

Pigott Craig R, King Martin S, Ellar David J

机构信息

Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom.

出版信息

Appl Environ Microbiol. 2008 Jun;74(11):3497-511. doi: 10.1128/AEM.02844-07. Epub 2008 Apr 11.

Abstract

Cry proteins are a large family of crystalline toxins produced by Bacillus thuringiensis. Individually, the family members are highly specific, but collectively, they target a diverse range of insects and nematodes. Domain II of the toxins is important for target specificity, and three loops at its apex have been studied extensively. There is considerable interest in determining whether modifications in this region may lead to toxins with novel specificity or potency. In this work, we studied the effect of loop substitution on toxin stability and specificity. For this purpose, sequences derived from antibody complementarity-determining regions (CDR) were used to replace native domain II apical loops to create "Crybodies." Each apical loop was substituted either individually or in combination with a library of third heavy-chain CDR (CDR-H3) sequences to create seven distinct Crybody types. An analysis of variants from each library indicated that the Cry1Aa framework can tolerate considerable sequence diversity at all loop positions but that some sequence combinations negatively affect structural stability and protease sensitivity. CDR-H3 substitution showed that loop position was an important determinant of insect toxicity: loop 2 was essential for activity, whereas the effects of substitutions at loop 1 and loop 3 were sequence dependent. Unexpectedly, differences in toxicity did not correlate with binding to cadherins--a major class of toxin receptors--since all Crybodies retained binding specificity. Collectively, these results serve to better define the role of the domain II apical loops as determinants of specificity and establish guidelines for their modification.

摘要

晶体蛋白是苏云金芽孢杆菌产生的一大类晶体毒素。该家族成员各自具有高度特异性,但总体上能靶向多种昆虫和线虫。毒素的结构域II对靶标特异性很重要,其顶端的三个环已得到广泛研究。人们对确定该区域的修饰是否会导致具有新特异性或效力的毒素有着浓厚兴趣。在这项研究中,我们研究了环替换对毒素稳定性和特异性的影响。为此,我们使用源自抗体互补决定区(CDR)的序列替换天然结构域II顶端环,以创建“晶体抗体”。每个顶端环单独替换,或与第三重链CDR(CDR-H3)序列库组合替换,从而创建了七种不同类型的晶体抗体。对每个文库变体的分析表明,Cry1Aa框架在所有环位置都能耐受相当大的序列多样性,但某些序列组合会对结构稳定性和蛋白酶敏感性产生负面影响。CDR-H3替换表明环位置是昆虫毒性的重要决定因素:环2对活性至关重要,而环1和环3替换的影响则取决于序列。出乎意料的是,毒性差异与与钙黏蛋白(一类主要的毒素受体)的结合无关,因为所有晶体抗体都保留了结合特异性。总体而言,这些结果有助于更好地界定结构域II顶端环作为特异性决定因素的作用,并为其修饰建立指导原则。

相似文献

3
Using phage display technology to obtain Crybodies active against non-target insects.
Sci Rep. 2017 Nov 2;7(1):14922. doi: 10.1038/s41598-017-09384-x.
4
Loop residues of the receptor binding domain of Bacillus thuringiensis Cry11Ba toxin are important for mosquitocidal activity.
FEBS Lett. 2009 Jun 18;583(12):2021-30. doi: 10.1016/j.febslet.2009.05.020. Epub 2009 May 18.
5
Novel Bacillus thuringiensis δ-endotoxin active against Locusta migratoria manilensis.
Appl Environ Microbiol. 2011 May;77(10):3227-33. doi: 10.1128/AEM.02462-10. Epub 2011 Mar 25.
6
The role of β20-β21 loop structure in insecticidal activity of Cry1Ac toxin from Bacillus thuringiensis.
Curr Microbiol. 2011 Feb;62(2):665-70. doi: 10.1007/s00284-010-9760-9. Epub 2010 Sep 28.
7
Towards novel Cry toxins with enhanced toxicity/broader: a new chimeric Cry4Ba / Cry1Ac toxin.
Appl Microbiol Biotechnol. 2017 Jan;101(1):113-122. doi: 10.1007/s00253-016-7766-3. Epub 2016 Aug 18.
9
10
Specific binding between Cry9Aa and Vip3Aa toxins synergizes their toxicity against Asiatic rice borer ().
J Biol Chem. 2018 Jul 20;293(29):11447-11458. doi: 10.1074/jbc.RA118.003490. Epub 2018 Jun 1.

引用本文的文献

1
Biotoxicity assessment of cloned cry 11 protein gene from 9NF.
Saudi J Biol Sci. 2022 Nov;29(11):103463. doi: 10.1016/j.sjbs.2022.103463. Epub 2022 Sep 27.
2
Making 3D-Cry Toxin Mutants: Much More Than a Tool of Understanding Toxins Mechanism of Action.
Toxins (Basel). 2020 Sep 16;12(9):600. doi: 10.3390/toxins12090600.
3
The level of Cry1Ac endotoxin and its efficacy against in Bt cotton at large scale in Pakistan.
GM Crops Food. 2021 Jan 1;12(1):1-17. doi: 10.1080/21645698.2020.1799644.
5
Crystal structure of Bacillus thuringiensis Cry7Ca1 toxin active against Locusta migratoria manilensis.
Protein Sci. 2019 Mar;28(3):609-619. doi: 10.1002/pro.3561. Epub 2018 Dec 22.
6
Using phage display technology to obtain Crybodies active against non-target insects.
Sci Rep. 2017 Nov 2;7(1):14922. doi: 10.1038/s41598-017-09384-x.
7
In silico models for predicting vector control chemicals targeting Aedes aegypti.
SAR QSAR Environ Res. 2014;25(10):805-35. doi: 10.1080/1062936X.2014.958291. Epub 2014 Oct 2.
8
Molecular approaches to improve the insecticidal activity of Bacillus thuringiensis Cry toxins.
Toxins (Basel). 2014 Aug 13;6(8):2393-423. doi: 10.3390/toxins6082393.
10
Improved insecticidal toxicity by fusing Cry1Ac of Bacillus thuringiensis with Av3 of Anemonia viridis.
Curr Microbiol. 2014 May;68(5):604-9. doi: 10.1007/s00284-013-0516-1. Epub 2013 Dec 29.

本文引用的文献

1
Role of receptors in Bacillus thuringiensis crystal toxin activity.
Microbiol Mol Biol Rev. 2007 Jun;71(2):255-81. doi: 10.1128/MMBR.00034-06.
3
Cry toxin mode of action in susceptible and resistant Heliothis virescens larvae.
J Invertebr Pathol. 2006 Jul;92(3):166-71. doi: 10.1016/j.jip.2006.01.010. Epub 2006 Jun 22.
4
A mechanism of cell death involving an adenylyl cyclase/PKA signaling pathway is induced by the Cry1Ab toxin of Bacillus thuringiensis.
Proc Natl Acad Sci U S A. 2006 Jun 27;103(26):9897-902. doi: 10.1073/pnas.0604017103. Epub 2006 Jun 20.
5
Structural and functional analysis of the pre-pore and membrane-inserted pore of Cry1Ab toxin.
J Invertebr Pathol. 2006 Jul;92(3):172-7. doi: 10.1016/j.jip.2006.02.008. Epub 2006 Jun 14.
7
Redesigning Bacillus thuringiensis Cry1Aa toxin into a mosquito toxin.
Protein Eng Des Sel. 2006 Mar;19(3):107-11. doi: 10.1093/protein/gzj009. Epub 2006 Jan 25.
8
A new generation of protein display scaffolds for molecular recognition.
Protein Sci. 2006 Jan;15(1):14-27. doi: 10.1110/ps.051817606.
9
Engineering novel binding proteins from nonimmunoglobulin domains.
Nat Biotechnol. 2005 Oct;23(10):1257-68. doi: 10.1038/nbt1127.
10
Engineered proteins as specific binding reagents.
Curr Opin Biotechnol. 2005 Aug;16(4):459-69. doi: 10.1016/j.copbio.2005.06.005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验