Suppr超能文献

哺乳动物细胞中Rheb-mTOR信号通路的特性:Rheb和mTOR的组成型活性突变体

Characterization of the Rheb-mTOR signaling pathway in mammalian cells: constitutive active mutants of Rheb and mTOR.

作者信息

Sato Tatsuhiro, Umetsu Akiko, Tamanoi Fuyuhiko

机构信息

Department of Microbiology, Immunology and Molecular Genetics, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, University of California, Los Angeles, California, USA.

出版信息

Methods Enzymol. 2008;438:307-20. doi: 10.1016/S0076-6879(07)38021-X.

Abstract

Rheb (Ras homolog enriched in brain) is a GTPase conserved from yeast to human and belongs to a unique family within the Ras superfamily of GTPases. Rheb plays critical roles in the activation of mTOR, a serine/threonine kinase that is involved in the activation of protein synthesis and growth. mTOR forms two distinct complexes, mTORC1 and mTORC2. While mTORC1 is implicated in the regulation of cell growth, proliferation, and cell size in response to amino acids and growth factors, mTORC2 is involved in actin organization. However, the mechanism of activation is not fully understood. Therefore, studies to elucidate the Rheb-mTOR signaling pathway are of great importance. Here we describe methods to characterize this pathway and to evaluate constitutive active mutants of Rheb and mTOR that we recently identified. Constitutive activity of the mutants can be demonstrated by the phosphorylation of ribosomal protein S6 kinase 1 (S6K1) and eIF4E-binding protein 1 (4E-BP1) both in vivo and in vitro after starving cells for amino acids and growth factors. In addition, formation and activity of mTORC1 and mTORC2 can be measured by immunoprecipitating these complexes and carrying out in vitro kinase assays. We also describe a protocol for rapamycin treatment, which directly inhibits mTOR and can be used to investigate the mTOR signaling pathway in cell growth, cell size, etc.

摘要

Rheb(脑中富含的Ras同源物)是一种从酵母到人类都保守的GTP酶,属于GTP酶Ras超家族中的一个独特家族。Rheb在mTOR的激活中起关键作用,mTOR是一种丝氨酸/苏氨酸激酶,参与蛋白质合成和生长的激活。mTOR形成两种不同的复合物,即mTORC1和mTORC2。虽然mTORC1参与响应氨基酸和生长因子对细胞生长、增殖和细胞大小的调节,但mTORC2参与肌动蛋白的组织。然而,其激活机制尚未完全了解。因此,阐明Rheb-mTOR信号通路的研究具有重要意义。在这里,我们描述了表征该通路以及评估我们最近鉴定的Rheb和mTOR组成型活性突变体的方法。在使细胞缺乏氨基酸和生长因子后,突变体的组成型活性可以通过核糖体蛋白S6激酶1(S6K1)和真核翻译起始因子4E结合蛋白1(4E-BP1)在体内和体外的磷酸化来证明。此外,mTORC1和mTORC2的形成和活性可以通过免疫沉淀这些复合物并进行体外激酶测定来测量。我们还描述了雷帕霉素处理的方案,雷帕霉素可直接抑制mTOR,并可用于研究细胞生长、细胞大小等方面的mTOR信号通路。

相似文献

3
RhoA modulates signaling through the mechanistic target of rapamycin complex 1 (mTORC1) in mammalian cells.
Cell Signal. 2014 Mar;26(3):461-7. doi: 10.1016/j.cellsig.2013.11.035. Epub 2013 Dec 3.
4
Specific activation of mTORC1 by Rheb G-protein in vitro involves enhanced recruitment of its substrate protein.
J Biol Chem. 2009 May 8;284(19):12783-91. doi: 10.1074/jbc.M809207200. Epub 2009 Mar 19.
6
Rheb activation of mTOR and S6K1 signaling.
Methods Enzymol. 2006;407:542-55. doi: 10.1016/S0076-6879(05)07044-8.
7
The proline-rich Akt substrate of 40 kDa (PRAS40) is a physiological substrate of mammalian target of rapamycin complex 1.
J Biol Chem. 2007 Jul 13;282(28):20329-39. doi: 10.1074/jbc.M702636200. Epub 2007 May 21.

引用本文的文献

1
AMPK Signaling Regulates Epithelioid Hemangioendothelioma Cell Growth.
Cancers (Basel). 2025 Sep 2;17(17):2889. doi: 10.3390/cancers17172889.
4
An integrated genetic analysis of epileptogenic brain malformed lesions.
Acta Neuropathol Commun. 2023 Mar 2;11(1):33. doi: 10.1186/s40478-023-01532-x.
5
Scalable Generation of Nanovesicles from Human-Induced Pluripotent Stem Cells for Cardiac Repair.
Int J Mol Sci. 2022 Nov 18;23(22):14334. doi: 10.3390/ijms232214334.
6
miR-199a-3p/5p regulate tumorgenesis via targeting Rheb in non-small cell lung cancer.
Int J Biol Sci. 2022 Jun 27;18(10):4187-4202. doi: 10.7150/ijbs.70312. eCollection 2022.
7
Blocking the Farnesyl Pocket of PDEδ Reduces Rheb-Dependent mTORC1 Activation and Survival of Cells.
Front Pharmacol. 2022 Jun 23;13:912688. doi: 10.3389/fphar.2022.912688. eCollection 2022.
8
mTOR Signaling in Pulmonary Vascular Disease: Pathogenic Role and Therapeutic Target.
Int J Mol Sci. 2021 Feb 21;22(4):2144. doi: 10.3390/ijms22042144.
9
Negative Regulation of mTOR Signaling Restricts Cell Proliferation in the Floor Plate.
Front Neurosci. 2019 Sep 25;13:1022. doi: 10.3389/fnins.2019.01022. eCollection 2019.

本文引用的文献

1
PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase.
Mol Cell. 2007 Mar 23;25(6):903-15. doi: 10.1016/j.molcel.2007.03.003.
2
Point mutations in TOR confer Rheb-independent growth in fission yeast and nutrient-independent mammalian TOR signaling in mammalian cells.
Proc Natl Acad Sci U S A. 2007 Feb 27;104(9):3514-9. doi: 10.1073/pnas.0608510104. Epub 2007 Feb 20.
3
Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40.
Nat Cell Biol. 2007 Mar;9(3):316-23. doi: 10.1038/ncb1547. Epub 2007 Feb 4.
6
SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity.
Cell. 2006 Oct 6;127(1):125-37. doi: 10.1016/j.cell.2006.08.033. Epub 2006 Sep 7.
7
mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s.
Curr Biol. 2006 Sep 19;16(18):1865-70. doi: 10.1016/j.cub.2006.08.001. Epub 2006 Aug 17.
8
mTOR and cancer: insights into a complex relationship.
Nat Rev Cancer. 2006 Sep;6(9):729-34. doi: 10.1038/nrc1974. Epub 2006 Aug 17.
9
Nutrient-dependent multimerization of the mammalian target of rapamycin through the N-terminal HEAT repeat region.
J Biol Chem. 2006 Sep 29;281(39):28605-14. doi: 10.1074/jbc.M606087200. Epub 2006 Jul 26.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验