Suppr超能文献

钾通道:突触可塑性中的新发现参与者。

Potassium channels: newly found players in synaptic plasticity.

作者信息

Kim Jinhyun, Hoffman Dax A

机构信息

Molecular Neurophysiology and Biophysics Unit, Laboratory of Cellular and Synaptic Neurophysiology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.

出版信息

Neuroscientist. 2008 Jun;14(3):276-86. doi: 10.1177/1073858408315041. Epub 2008 Apr 15.

Abstract

One of the major issues for modern neuroscience research concerns the molecular and cellular mechanisms that underlie the acquisition, storage, and recollection of memories by the brain. Regulation of the strength of individual synaptic inputs (synaptic plasticity) has, for decades, been the front-running candidate mechanism for cellular information storage, with some direct supporting evidence recently obtained. Research into the molecular mechanisms responsible for changing synaptic strength has, to date, primarily focused on trafficking and properties of the neurotransmitter receptors themselves (AMPARs and NMDARs). However, recent evidence indicates that, subsequent to receptor activation, synaptic inputs are subject to regulation by synaptically located K+ channels. It is therefore critical to understand the biophysical properties and subcellular localization (density and distribution) of these channels and how their properties are modulated. Here we will review recent findings showing that two different classes of K+ channels (A-type and small conductance, Ca2+ -activated K+ channels), beyond their traditional role in regulating action potential firing, contribute to the regulation of synaptic strength in the hippocampus. In addition, we discuss how modulation of these channels' properties and expression might contribute to synaptic plasticity.

摘要

现代神经科学研究的主要问题之一涉及大脑获取、存储和回忆记忆的分子和细胞机制。几十年来,单个突触输入强度的调节(突触可塑性)一直是细胞信息存储的首要候选机制,最近获得了一些直接的支持证据。迄今为止,对负责改变突触强度的分子机制的研究主要集中在神经递质受体本身(AMPA受体和NMDA受体)的运输和特性上。然而,最近的证据表明,在受体激活后,突触输入受到位于突触处的钾离子通道的调节。因此,了解这些通道的生物物理特性和亚细胞定位(密度和分布)以及它们的特性如何被调节至关重要。在这里,我们将回顾最近的研究结果,这些结果表明两类不同的钾离子通道(A型和小电导钙激活钾离子通道),除了它们在调节动作电位发放中的传统作用外,还对海马体中突触强度的调节有贡献。此外,我们还将讨论这些通道特性和表达的调节如何可能有助于突触可塑性。

相似文献

1
Potassium channels: newly found players in synaptic plasticity.
Neuroscientist. 2008 Jun;14(3):276-86. doi: 10.1177/1073858408315041. Epub 2008 Apr 15.
2
Enhancing synaptic plasticity and memory: a role for small-conductance Ca(2+)-activated K+ channels.
Neuroscientist. 2003 Dec;9(6):434-9. doi: 10.1177/1073858403259282.
4
SK channels regulate excitatory synaptic transmission and plasticity in the lateral amygdala.
Nat Neurosci. 2005 May;8(5):635-41. doi: 10.1038/nn1450. Epub 2005 Apr 24.
6
7
Small conductance Ca2+-activated K+ channels modulate synaptic plasticity and memory encoding.
J Neurosci. 2002 Dec 1;22(23):10163-71. doi: 10.1523/JNEUROSCI.22-23-10163.2002.
8
Localization and function of Ih channels in a small neural network.
J Neurophysiol. 2011 Jul;106(1):44-58. doi: 10.1152/jn.00897.2010. Epub 2011 Apr 13.
9
Altered synaptic and non-synaptic properties of CA1 pyramidal neurons in Kv4.2 knockout mice.
J Physiol. 2008 Aug 15;586(16):3881-92. doi: 10.1113/jphysiol.2008.154336. Epub 2008 Jun 19.
10
Hippocampal long-term synaptic plasticity and signal amplification of NMDA receptors.
Crit Rev Neurobiol. 2006;18(1-2):71-84. doi: 10.1615/critrevneurobiol.v18.i1-2.80.

引用本文的文献

3
Kv4.2 Regulates Basal Synaptic Strength by Inhibiting R-Type Calcium Channels in the Hippocampus.
J Neurosci. 2025 Mar 19;45(12):e0444242025. doi: 10.1523/JNEUROSCI.0444-24.2025.
5
Co-methylation networks associated with cognition and structural brain development during adolescence.
Front Genet. 2025 Jan 7;15:1451150. doi: 10.3389/fgene.2024.1451150. eCollection 2024.
6
β-adrenergic receptor-induced E-S potentiation in the dorsal and ventral hippocampus.
Front Synaptic Neurosci. 2024 Dec 20;16:1511485. doi: 10.3389/fnsyn.2024.1511485. eCollection 2024.
7
Design of Ultrapotent Genetically Encoded Inhibitors of Kv4.2 for Gating Neural Plasticity.
J Neurosci. 2024 Feb 14;44(7):e2295222023. doi: 10.1523/JNEUROSCI.2295-22.2023.
10
The Na-activated K channel Slack contributes to synaptic development and plasticity.
Cell Mol Life Sci. 2021 Dec;78(23):7569-7587. doi: 10.1007/s00018-021-03953-0. Epub 2021 Oct 18.

本文引用的文献

1
SK2 channel plasticity contributes to LTP at Schaffer collateral-CA1 synapses.
Nat Neurosci. 2008 Feb;11(2):170-7. doi: 10.1038/nn2041. Epub 2008 Jan 20.
4
SK3 trafficking in hippocampal cells: the role of different molecular domains.
Biosci Rep. 2006 Dec;26(6):399-412. doi: 10.1007/s10540-006-9029-5.
5
Manipulating Kv4.2 identifies a specific component of hippocampal pyramidal neuron A-current that depends upon Kv4.2 expression.
J Neurochem. 2006 Nov;99(4):1207-23. doi: 10.1111/j.1471-4159.2006.04185.x. Epub 2006 Oct 5.
6
Common molecular mechanisms in explicit and implicit memory.
J Neurochem. 2006 Jun;97(6):1520-33. doi: 10.1111/j.1471-4159.2006.03870.x.
7
The distribution and targeting of neuronal voltage-gated ion channels.
Nat Rev Neurosci. 2006 Jul;7(7):548-62. doi: 10.1038/nrn1938.
8
Diversity of potassium channels in neuronal dendrites.
Prog Neurobiol. 2006 Apr;78(6):374-89. doi: 10.1016/j.pneurobio.2006.03.003. Epub 2006 May 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验