Suppr超能文献

肿瘤衍生细胞系中拉帕替尼敏感性的全基因组DNA拷贝数预测指标

Genome-wide DNA copy number predictors of lapatinib sensitivity in tumor-derived cell lines.

作者信息

Greshock Joel, Cheng Jie, Rusnak David, Martin Anne Marie, Wooster Richard, Gilmer Tona, Lee Kwan, Weber Barbara L, Zaks Tal

机构信息

Translational Medicine Oncology, GlaxoSmithKline, 1250 South Collegeville Road, UP 4W-4230, Collegeville, PA 19426, USA.

出版信息

Mol Cancer Ther. 2008 Apr;7(4):935-43. doi: 10.1158/1535-7163.MCT-07-2072.

Abstract

A common aim of pharmacogenomic studies that use genome-wide assays on panels of cancers is the unbiased discovery of genomic alterations that are associated with clinical outcome and drug response. Previous studies of lapatinib, a selective dual-kinase inhibitor of epidermal growth factor receptor (EGFR) and HER2 tyrosine kinases, have shown predictable relationships between the activity of these target genes and response. Under the hypothesis that additional genes may play a role in drug sensitivity, a predictive model for lapatinib response was constructed from genome-wide DNA copy number data from 24 cancer cell lines. An optimal predictive model which consists of aberrations at nine distinct genetic loci, includes gains of HER2, EGFR, and loss of CDKN2A. This model achieved an area under the receiver operating characteristic curve of approximately 0.85 (80% confidence interval, 0.70-0.98; P < 0.01), and correctly classified the sensitivity status of 8 of 10 head and neck cancer cell lines. This study shows that biomarkers predictive for lapatinib sensitivity, including the previously described copy number gains of EGFR and HER2, can be discovered using novel genomic assays in an unbiased manner. Furthermore, these results show the utility of DNA copy number profiles in pharmacogenomic studies.

摘要

在癌症样本上使用全基因组分析的药物基因组学研究的一个共同目标,是无偏倚地发现与临床结果和药物反应相关的基因组改变。先前对拉帕替尼(一种表皮生长因子受体(EGFR)和HER2酪氨酸激酶的选择性双激酶抑制剂)的研究表明,这些靶基因的活性与反应之间存在可预测的关系。基于其他基因可能在药物敏感性中起作用的假设,利用来自24个癌细胞系的全基因组DNA拷贝数数据构建了拉帕替尼反应的预测模型。一个由九个不同基因位点的畸变组成的最佳预测模型,包括HER2、EGFR的扩增以及CDKN2A的缺失。该模型在受试者工作特征曲线下的面积约为0.85(80%置信区间,0.70 - 0.98;P < 0.01),并正确分类了10个头颈癌细胞系中8个的敏感性状态。这项研究表明,使用新型基因组分析可以无偏倚地发现预测拉帕替尼敏感性的生物标志物,包括先前描述的EGFR和HER2的拷贝数增加。此外,这些结果显示了DNA拷贝数谱在药物基因组学研究中的实用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验