Suppr超能文献

类药物分子血脑屏障通透性的新型预测模型。

New predictive models for blood-brain barrier permeability of drug-like molecules.

作者信息

Kortagere Sandhya, Chekmarev Dmitriy, Welsh William J, Ekins Sean

机构信息

Department of Pharmacology and Environmental Bioinformatics and Computational Toxicology Center (ebCTC), University of Medicine & Dentistry of New Jersey (UMDNJ)-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, New Jersey, 08854, USA.

出版信息

Pharm Res. 2008 Aug;25(8):1836-45. doi: 10.1007/s11095-008-9584-5. Epub 2008 Apr 16.

Abstract

PURPOSE

The goals of the present study were to apply a generalized regression model and support vector machine (SVM) models with Shape Signatures descriptors, to the domain of blood-brain barrier (BBB) modeling.

MATERIALS AND METHODS

The Shape Signatures method is a novel computational tool that was used to generate molecular descriptors utilized with the SVM classification technique with various BBB datasets. For comparison purposes we have created a generalized linear regression model with eight MOE descriptors and these same descriptors were also used to create SVM models.

RESULTS

The generalized regression model was tested on 100 molecules not in the model and resulted in a correlation r2 = 0.65. SVM models with MOE descriptors were superior to regression models, while Shape Signatures SVM models were comparable or better than those with MOE descriptors. The best 2D shape signature models had 10-fold cross validation prediction accuracy between 80-83% and leave-20%-out testing prediction accuracy between 80-82% as well as correctly predicting 84% of BBB+ compounds (n = 95) in an external database of drugs.

CONCLUSIONS

Our data indicate that Shape Signatures descriptors can be used with SVM and these models may have utility for predicting blood-brain barrier permeation in drug discovery.

摘要

目的

本研究的目标是将具有形状特征描述符的广义回归模型和支持向量机(SVM)模型应用于血脑屏障(BBB)建模领域。

材料与方法

形状特征方法是一种新型计算工具,用于生成与各种BBB数据集的SVM分类技术一起使用的分子描述符。为了进行比较,我们创建了一个具有八个MOE描述符的广义线性回归模型,并且这些相同的描述符也用于创建SVM模型。

结果

在模型中未出现的100个分子上对广义回归模型进行了测试,相关系数r2 = 0.65。具有MOE描述符的SVM模型优于回归模型,而形状特征SVM模型与具有MOE描述符的模型相当或更好。最佳的二维形状特征模型在10倍交叉验证中的预测准确率在80 - 83%之间,留20%法测试的预测准确率在80 - 82%之间,并且在一个外部药物数据库中正确预测了84%的BBB +化合物(n = 95)。

结论

我们的数据表明形状特征描述符可与SVM一起使用,并且这些模型可能在药物发现中预测血脑屏障通透性方面具有实用性。

相似文献

1
New predictive models for blood-brain barrier permeability of drug-like molecules.
Pharm Res. 2008 Aug;25(8):1836-45. doi: 10.1007/s11095-008-9584-5. Epub 2008 Apr 16.
3
QSAR modeling of the blood-brain barrier permeability for diverse organic compounds.
Pharm Res. 2008 Aug;25(8):1902-14. doi: 10.1007/s11095-008-9609-0. Epub 2008 Jun 14.
5
Exploring blood-brain barrier passage using atomic weighted vector and machine learning.
J Mol Model. 2024 Nov 1;30(11):393. doi: 10.1007/s00894-024-06188-5.
6
Computer Assisted Models for Blood Brain Barrier Permeation of 1, 5-Benzodiazepines.
Curr Comput Aided Drug Des. 2021;17(2):187-200. doi: 10.2174/1573409916666200131114018.
7
Developing Enhanced Blood-Brain Barrier Permeability Models: Integrating External Bio-Assay Data in QSAR Modeling.
Pharm Res. 2015 Sep;32(9):3055-65. doi: 10.1007/s11095-015-1687-1. Epub 2015 Apr 11.
8
A Genetic Algorithm Based Support Vector Machine Model for Blood-Brain Barrier Penetration Prediction.
Biomed Res Int. 2015;2015:292683. doi: 10.1155/2015/292683. Epub 2015 Oct 4.
9
Shape signatures: new descriptors for predicting cardiotoxicity in silico.
Chem Res Toxicol. 2008 Jun;21(6):1304-14. doi: 10.1021/tx800063r. Epub 2008 May 8.
10
Uncovering blood-brain barrier permeability: a comparative study of machine learning models using molecular fingerprints, and SHAP explainability.
SAR QSAR Environ Res. 2024 Dec;35(12):1155-1171. doi: 10.1080/1062936X.2024.2446352. Epub 2025 Jan 8.

引用本文的文献

2
Employing Automated Machine Learning (AutoML) Methods to Facilitate the ADMET Properties Prediction.
J Chem Inf Model. 2025 Apr 14;65(7):3215-3225. doi: 10.1021/acs.jcim.4c02122. Epub 2025 Mar 14.
3
Exploring blood-brain barrier passage using atomic weighted vector and machine learning.
J Mol Model. 2024 Nov 1;30(11):393. doi: 10.1007/s00894-024-06188-5.
4
The Application of Methods for Prediction of Blood-Brain Barrier Permeability of Small Molecule PET Tracers.
Front Nucl Med. 2022 Mar 25;2:853475. doi: 10.3389/fnume.2022.853475. eCollection 2022.
5
Predicting Drug Blood-Brain Barrier Penetration with Adverse Event Report Embeddings.
AMIA Annu Symp Proc. 2023 Apr 29;2022:1163-1172. eCollection 2022.
6
Development of QSAR models to predict blood-brain barrier permeability.
Front Pharmacol. 2022 Oct 20;13:1040838. doi: 10.3389/fphar.2022.1040838. eCollection 2022.
8
A deep learning approach to predict blood-brain barrier permeability.
PeerJ Comput Sci. 2021 Jun 10;7:e515. doi: 10.7717/peerj-cs.515. eCollection 2021.
9
Applications of artificial intelligence to drug design and discovery in the big data era: a comprehensive review.
Mol Divers. 2021 Aug;25(3):1643-1664. doi: 10.1007/s11030-021-10237-z. Epub 2021 Jun 10.
10
Development of an a priori computational approach for brain uptake of compounds in an insect model system.
Bioorg Med Chem Lett. 2021 May 15;40:127930. doi: 10.1016/j.bmcl.2021.127930. Epub 2021 Mar 10.

本文引用的文献

1
The design and molecular modeling of CNS drugs.
Curr Opin Drug Discov Devel. 1999 Jul;2(4):286-92.
2
Shape signatures: new descriptors for predicting cardiotoxicity in silico.
Chem Res Toxicol. 2008 Jun;21(6):1304-14. doi: 10.1021/tx800063r. Epub 2008 May 8.
3
Prediction of blood-brain partitioning: a model based on ab initio calculated quantum chemical descriptors.
J Mol Graph Model. 2008 Jun;26(8):1223-36. doi: 10.1016/j.jmgm.2007.11.004. Epub 2007 Nov 21.
4
Modelling of the blood-brain barrier in drug discovery and development.
Nat Rev Drug Discov. 2007 Aug;6(8):650-61. doi: 10.1038/nrd2368.
5
Benchmarking of QSAR models for blood-brain barrier permeation.
J Chem Inf Model. 2007 Jul-Aug;47(4):1648-56. doi: 10.1021/ci700100f. Epub 2007 Jun 30.
7
Development and application of hybrid structure based method for efficient screening of ligands binding to G-protein coupled receptors.
J Comput Aided Mol Des. 2006 Dec;20(12):789-802. doi: 10.1007/s10822-006-9077-8. Epub 2006 Oct 13.
8
In silico prediction of pregnane X receptor activators by machine learning approaches.
Mol Pharmacol. 2007 Jan;71(1):158-68. doi: 10.1124/mol.106.027623. Epub 2006 Sep 26.
9
Rapid identification of P-glycoprotein substrates and inhibitors.
Drug Metab Dispos. 2006 Dec;34(12):1976-84. doi: 10.1124/dmd.106.012351. Epub 2006 Sep 22.
10
Shape Signatures: speeding up computer aided drug discovery.
Drug Discov Today. 2006 Oct;11(19-20):895-904. doi: 10.1016/j.drudis.2006.08.014. Epub 2006 Sep 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验