Suppr超能文献

利用原子加权向量和机器学习探索血脑屏障通透性。

Exploring blood-brain barrier passage using atomic weighted vector and machine learning.

机构信息

Department of Computer Sciences, Faculty of Informatics, Camagüey University, 74650, Camagüey City, Cuba.

Walter Sisulu University, Mthatha, Eastern Cape, Republic of South Africa.

出版信息

J Mol Model. 2024 Nov 1;30(11):393. doi: 10.1007/s00894-024-06188-5.

Abstract

CONTEXT

This study investigates the potential of leveraging molecular properties, as determined by MD-LOVIs software and machine learning techniques, to predict the ability of compounds to cross the blood-brain barrier (BBB). Accurate prediction of BBB permeation is critical for the development of central nervous system (CNS) drugs. The study applies various machine learning models, including both classification and regression techniques, to predict BBB passage and molecular activity. Notably, classification models such as GBM-AWV (accuracy = 0.801), GLM-CN (accuracy = 0.808), SVMPoly-means (accuracy = 0.980), SVMPoly-AC (accuracy = 0.980), SVMPoly-MI_TI_SI (accuracy = 0.900), SVMPoly-GI (accuracy = 0.900), RF-means (accuracy = 0.870), and GLM-means (accuracy = 0.818) demonstrate high accuracy in predicting BBB passage. In contrast, regression models like ES-RLM-AG (R = 0.902), IB-IBK (R = 0.82), IB-Kstar (R = 0.834), IB-MLP (R = 0.843), and DRF-AWV (R = 0.810) exhibit strong performance in predicting molecular activity. The results show that classification models like GBM-AWV, GLM-CN, and SVMPoly variants, as well as regression models like ES-RLM-AG and IB-MLP, achieve high performance, demonstrating the effectiveness of machine learning in predicting BBB permeability.

METHODS

The computational methods employed in this study include the MD-LOVIs software for generating molecular descriptors and several machine learning algorithms, including gradient boosting machines (GBM), generalized linear models (GLM), support vector machines (SVM) with polynomial kernels, random forests (RF), ensemble regression models, and instance-based learning algorithms. These models were trained and validated using various datasets to predict BBB passage and molecular activity, with the performance metrics reported for each model. Standard computational techniques were employed throughout, ensuring the reliability of the predictions.

摘要

背景

本研究旨在利用 MD-LOVIs 软件和机器学习技术确定的分子特性,来预测化合物穿透血脑屏障(BBB)的能力。准确预测 BBB 通透性对于中枢神经系统(CNS)药物的开发至关重要。该研究应用了各种机器学习模型,包括分类和回归技术,来预测 BBB 通透性和分子活性。值得注意的是,分类模型,如 GBM-AWV(准确率=0.801)、GLM-CN(准确率=0.808)、SVMPoly-means(准确率=0.980)、SVMPoly-AC(准确率=0.980)、SVMPoly-MI_TI_SI(准确率=0.900)、SVMPoly-GI(准确率=0.900)、RF-means(准确率=0.870)和 GLM-means(准确率=0.818),在预测 BBB 通透性方面表现出较高的准确性。相比之下,回归模型,如 ES-RLM-AG(R=0.902)、IB-IBK(R=0.82)、IB-Kstar(R=0.834)、IB-MLP(R=0.843)和 DRF-AWV(R=0.810),在预测分子活性方面表现出较强的性能。结果表明,分类模型,如 GBM-AWV、GLM-CN 和 SVMPoly 变体,以及回归模型,如 ES-RLM-AG 和 IB-MLP,表现出较高的性能,证明了机器学习在预测 BBB 通透性方面的有效性。

方法

本研究采用的计算方法包括用于生成分子描述符的 MD-LOVIs 软件和几种机器学习算法,包括梯度提升机(GBM)、广义线性模型(GLM)、支持向量机(SVM)与多项式核、随机森林(RF)、集成回归模型和基于实例的学习算法。这些模型使用各种数据集进行训练和验证,以预测 BBB 通透性和分子活性,并报告了每个模型的性能指标。整个过程采用了标准的计算技术,以确保预测的可靠性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验