Han Herim, Shaker Bilal, Lee Jin Hee, Choi Sunghwan, Yoon Sanghee, Singh Maninder, Basith Shaherin, Cui Minghua, Ahn Sunil, An Junyoung, Kang Soosung, Yeom Min Sun, Choi Sun
NamuICT R&D Center, NamuICT, Seoul 07793, Republic of Korea.
Global AI Drug Discovery Center, College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea.
J Chem Inf Model. 2025 Apr 14;65(7):3215-3225. doi: 10.1021/acs.jcim.4c02122. Epub 2025 Mar 14.
The rationale for using ADMET prediction tools in the early drug discovery paradigm is to guide the design of new compounds with favorable ADMET properties and ultimately minimize the attrition rates of drug failures. Artificial intelligence (AI) in ADMET modeling has gained momentum due to its high-throughput and low-cost attributes. In this study, we developed a machine learning model capable of predicting 11 ADMET properties of chemical compounds. Each model was constructed by combining one of 40 classification algorithms including random forest (RF), extreme gradient boosting (XGB), support vector machine (SVM), and gradient boosting (GB) with one of three predefined hyperparameter configurations. This process can be efficiently performed using automated machine learning (AutoML) methods, which automatically search for the best combination of model algorithms and optimized hyperparameters. We developed optimal predictive models for 11 different ADMET properties using the Hyperopt-sklearn AutoML method. All of the developed models depicted an area under the ROC curve (AUC) >0.8. Furthermore, our developed models outperformed most of the ADMET properties and showed comparable performance in other properties when evaluated on external data sets and compared with published predictive models. Our results support the applicability of AutoML in ADMET prediction and will be helpful for ADMET prediction in early-stage drug discovery.
在早期药物发现模式中使用ADMET预测工具的基本原理是指导设计具有良好ADMET特性的新化合物,并最终最大限度地降低药物研发失败的淘汰率。ADMET建模中的人工智能(AI)因其高通量和低成本特性而获得了发展动力。在本研究中,我们开发了一种能够预测化合物11种ADMET特性的机器学习模型。每个模型都是通过将40种分类算法(包括随机森林(RF)、极端梯度提升(XGB)、支持向量机(SVM)和梯度提升(GB))中的一种与三种预定义超参数配置中的一种相结合来构建的。这个过程可以使用自动机器学习(AutoML)方法高效地执行,该方法会自动搜索模型算法和优化超参数的最佳组合。我们使用Hyperopt-sklearn自动机器学习方法为11种不同的ADMET特性开发了最优预测模型。所有开发的模型的ROC曲线下面积(AUC)均>0.8。此外,在外部数据集上进行评估并与已发表的预测模型进行比较时,我们开发的模型在大多数ADMET特性方面表现优于其他模型,在其他特性方面表现相当。我们的结果支持了自动机器学习在ADMET预测中的适用性,并将有助于早期药物发现中的ADMET预测。