Suppr超能文献

腓肠神经经皮电刺激后股二头肌肌电图的taxometric分析:确定伤害性屈曲反射(NFR)的潜在结构。

Taxometric analysis of biceps femoris EMG following electrocutaneous stimulation over the sural nerve: determining the latent structure of the nociceptive flexion reflex (NFR).

作者信息

Rhudy Jamie L, Green Bradley A, Arnau Randolph C, France Christopher R

机构信息

Department of Psychology, University of Tulsa, Tulsa, OK 74104, USA.

出版信息

Int J Psychophysiol. 2008 Jul;69(1):18-26. doi: 10.1016/j.ijpsycho.2008.02.006. Epub 2008 Mar 4.

Abstract

The nociceptive flexion reflex (NFR) is a polysynaptic withdrawal reflex typically assessed from biceps femoris electromyogram (EMG) following noxious stimulation of the ipsilateral sural nerve. Electrophysiological evidence suggests the reflex is elicited following the activation of small diameter A-delta afferents. As a result, the NFR is assumed to be a categorically distinct construct that emerges from EMG activity only following nociceptor activation. Despite the widespread use of the NFR in pain research, there has been little attempt to verify the latent structure of the NFR. The present study used "coherent cut kinetics" taxometric analyses to examine whether the latent structure of biceps femoris EMG reflects the taxonic structure that would be predicted from electrophysiological evidence. To achieve this end, preliminary analyses first compared different methods of scoring NFR magnitude. Results suggested the presence of a taxon in the covariance of biceps femoris EMG and stimulus intensity that is likely to be the NFR. Furthermore, preliminary analyses suggested the best method of scoring NFR magnitude was using Cohen's d. Implications of these results are discussed.

摘要

伤害性屈曲反射(NFR)是一种多突触退缩反射,通常在对同侧腓肠神经进行伤害性刺激后,根据股二头肌肌电图(EMG)进行评估。电生理证据表明,该反射是在小直径A-δ传入神经激活后引发的。因此,NFR被认为是一种完全不同的结构,仅在伤害感受器激活后才从EMG活动中出现。尽管NFR在疼痛研究中被广泛使用,但几乎没有尝试去验证NFR的潜在结构。本研究使用“连贯切割动力学”分类分析来检验股二头肌EMG的潜在结构是否反映了电生理证据所预测的分类结构。为了实现这一目的,初步分析首先比较了评分NFR大小的不同方法。结果表明,股二头肌EMG与刺激强度的协方差中存在一个分类群,可能就是NFR。此外,初步分析表明,评分NFR大小的最佳方法是使用科恩d值。讨论了这些结果的意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验