Suppr超能文献

酵母激酶组分析揭示了丝状生长过程中受调控的蛋白质定位网络。

Analysis of the yeast kinome reveals a network of regulated protein localization during filamentous growth.

作者信息

Bharucha Nikë, Ma Jun, Dobry Craig J, Lawson Sarah K, Yang Zhifen, Kumar Anuj

机构信息

Department of Molecular, Cellular, and Developmental Biology, and Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216, USA.

出版信息

Mol Biol Cell. 2008 Jul;19(7):2708-17. doi: 10.1091/mbc.e07-11-1199. Epub 2008 Apr 16.

Abstract

The subcellular distribution of kinases and other signaling proteins is regulated in response to cellular cues; however, the extent of this regulation has not been investigated for any gene set in any organism. Here, we present a systematic analysis of protein kinases in the budding yeast, screening for differential localization during filamentous growth. Filamentous growth is an important stress response involving mitogen-activated protein kinase and cAMP-dependent protein kinase signaling modules, wherein yeast cells form interconnected and elongated chains. Because standard strains of yeast are nonfilamentous, we constructed a unique set of 125 kinase-yellow fluorescent protein chimeras in the filamentous Sigma1278b strain for this study. In total, we identified six cytoplasmic kinases (Bcy1p, Fus3p, Ksp1p, Kss1p, Sks1p, and Tpk2p) that localize predominantly to the nucleus during filamentous growth. These kinases form part of an interdependent, localization-based regulatory network: deletion of each individual kinase, or loss of kinase activity, disrupts the nuclear translocation of at least two other kinases. In particular, this study highlights a previously unknown function for the kinase Ksp1p, indicating the essentiality of its nuclear translocation during yeast filamentous growth. Thus, the localization of Ksp1p and the other kinases identified here is tightly controlled during filamentous growth, representing an overlooked regulatory component of this stress response.

摘要

激酶和其他信号蛋白的亚细胞分布会根据细胞信号进行调节;然而,尚未针对任何生物体中的任何基因集对这种调节的程度进行研究。在此,我们对出芽酵母中的蛋白激酶进行了系统分析,筛选丝状生长过程中的差异定位。丝状生长是一种重要的应激反应,涉及丝裂原活化蛋白激酶和环磷酸腺苷依赖性蛋白激酶信号模块,在此过程中酵母细胞形成相互连接的细长链。由于标准酵母菌株是非丝状的,我们为这项研究在丝状Sigma1278b菌株中构建了一组独特的125个激酶 - 黄色荧光蛋白嵌合体。总共,我们鉴定出六种细胞质激酶(Bcy1p、Fus3p、Ksp1p、Kss1p、Sks1p和Tpk2p),它们在丝状生长过程中主要定位于细胞核。这些激酶构成了一个相互依赖的、基于定位的调节网络的一部分:删除每个单独的激酶或激酶活性丧失,会破坏至少另外两种激酶的核转位。特别是,这项研究突出了激酶Ksp1p以前未知的功能,表明其在酵母丝状生长过程中核转位的必要性。因此,Ksp1p和此处鉴定的其他激酶的定位在丝状生长过程中受到严格控制,代表了这种应激反应中一个被忽视的调节成分。

相似文献

1
Analysis of the yeast kinome reveals a network of regulated protein localization during filamentous growth.
Mol Biol Cell. 2008 Jul;19(7):2708-17. doi: 10.1091/mbc.e07-11-1199. Epub 2008 Apr 16.
2
Hsl7p, a negative regulator of Ste20p protein kinase in the Saccharomyces cerevisiae filamentous growth-signaling pathway.
Proc Natl Acad Sci U S A. 1999 Jul 20;96(15):8522-7. doi: 10.1073/pnas.96.15.8522.
3
Human ERK1 induces filamentous growth and cell wall remodeling pathways in Saccharomyces cerevisiae.
J Biol Chem. 2000 Jul 7;275(27):20638-46. doi: 10.1074/jbc.M910024199.
4
A Stress-Responsive Signaling Network Regulating Pseudohyphal Growth and Ribonucleoprotein Granule Abundance in .
Genetics. 2019 Oct;213(2):705-720. doi: 10.1534/genetics.119.302538. Epub 2019 Aug 27.
5
Large-scale analysis of yeast filamentous growth by systematic gene disruption and overexpression.
Mol Biol Cell. 2008 Jan;19(1):284-96. doi: 10.1091/mbc.e07-05-0519. Epub 2007 Nov 7.
6
Large-Scale Analysis of Kinase Signaling in Yeast Pseudohyphal Development Identifies Regulation of Ribonucleoprotein Granules.
PLoS Genet. 2015 Oct 8;11(10):e1005564. doi: 10.1371/journal.pgen.1005564. eCollection 2015 Oct.
8
Regulation of the Saccharomyces cerevisiae Slt2 kinase pathway by the stress-inducible Sdp1 dual specificity phosphatase.
J Biol Chem. 2002 Jun 14;277(24):21278-84. doi: 10.1074/jbc.M202557200. Epub 2002 Mar 28.

引用本文的文献

1
Gain- and loss-of-function alleles within signaling pathways lead to phenotypic diversity among individuals.
iScience. 2024 Aug 31;27(10):110860. doi: 10.1016/j.isci.2024.110860. eCollection 2024 Oct 18.
4
From beer to breadboards: yeast as a force for biological innovation.
Genome Biol. 2024 Jan 4;25(1):10. doi: 10.1186/s13059-023-03156-9.
5
Ksp1 is an autophagic receptor protein for the Snx4-assisted autophagy of Ssn2/Med13.
Autophagy. 2024 Feb;20(2):397-415. doi: 10.1080/15548627.2023.2259708. Epub 2024 Jan 25.
6
Gene by Environment Interactions reveal new regulatory aspects of signaling network plasticity.
PLoS Genet. 2022 Jan 4;18(1):e1009988. doi: 10.1371/journal.pgen.1009988. eCollection 2022 Jan.
7
A Rab escort protein regulates the MAPK pathway that controls filamentous growth in yeast.
Sci Rep. 2020 Dec 17;10(1):22184. doi: 10.1038/s41598-020-78470-4.
8
New Aspects of Invasive Growth Regulation Identified by Functional Profiling of MAPK Pathway Targets in .
Genetics. 2020 Sep;216(1):95-116. doi: 10.1534/genetics.120.303369. Epub 2020 Jul 14.
9
A Stress-Responsive Signaling Network Regulating Pseudohyphal Growth and Ribonucleoprotein Granule Abundance in .
Genetics. 2019 Oct;213(2):705-720. doi: 10.1534/genetics.119.302538. Epub 2019 Aug 27.
10
Filamentation Regulatory Pathways Control Adhesion-Dependent Surface Responses in Yeast.
Genetics. 2019 Jul;212(3):667-690. doi: 10.1534/genetics.119.302004. Epub 2019 May 3.

本文引用的文献

1
Large-scale analysis of yeast filamentous growth by systematic gene disruption and overexpression.
Mol Biol Cell. 2008 Jan;19(1):284-96. doi: 10.1091/mbc.e07-05-0519. Epub 2007 Nov 7.
2
Cross-talk and decision making in MAP kinase pathways.
Nat Genet. 2007 Mar;39(3):409-14. doi: 10.1038/ng1957. Epub 2007 Jan 28.
3
Proteomic identification of palmitoylated proteins.
Methods. 2006 Oct;40(2):135-42. doi: 10.1016/j.ymeth.2006.05.026.
4
Target hub proteins serve as master regulators of development in yeast.
Genes Dev. 2006 Feb 15;20(4):435-48. doi: 10.1101/gad.1389306. Epub 2006 Jan 31.
5
Mutated yeast heat shock transcription factor activates transcription independently of hyperphosphorylation.
J Biol Chem. 2006 Feb 17;281(7):3936-42. doi: 10.1074/jbc.M510827200. Epub 2005 Dec 17.
6
Genome-wide surveys for phosphorylation-dependent substrates of SCF ubiquitin ligases.
Methods Enzymol. 2005;399:433-58. doi: 10.1016/S0076-6879(05)99030-7.
7
Combining chemical genetics and proteomics to identify protein kinase substrates.
Proc Natl Acad Sci U S A. 2005 Dec 13;102(50):17940-5. doi: 10.1073/pnas.0509080102. Epub 2005 Dec 5.
8
Biochemical and genetic analysis of the yeast proteome with a movable ORF collection.
Genes Dev. 2005 Dec 1;19(23):2816-26. doi: 10.1101/gad.1362105.
9
Global analysis of protein phosphorylation in yeast.
Nature. 2005 Dec 1;438(7068):679-84. doi: 10.1038/nature04187.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验