Suppr超能文献

尾侧脑干处理对于由外周和后脑胰高血糖素样肽-1受体刺激驱动的行为、交感神经和副交感神经反应而言是足够的。

Caudal brainstem processing is sufficient for behavioral, sympathetic, and parasympathetic responses driven by peripheral and hindbrain glucagon-like-peptide-1 receptor stimulation.

作者信息

Hayes Matthew R, Skibicka Karolina P, Grill Harvey J

机构信息

Graduate Groups of Psychology and Neuroscience, University of Pennsylvania, 3720 Walnut Street, Philadelphia, Pennsylvania 19104, USA.

出版信息

Endocrinology. 2008 Aug;149(8):4059-68. doi: 10.1210/en.2007-1743. Epub 2008 Apr 17.

Abstract

The effects of peripheral glucagon like peptide-1 receptor (GLP-1R) stimulation on feeding, gastric emptying, and energetic responses involve vagal transmission and central nervous system processing. Despite a lack of studies aimed at determining which central nervous system regions are critical for the GLP-1R response production, hypothalamic/forebrain processing is regarded as essential for these effects. Here the contribution of the caudal brainstem to the control of food intake, core temperature, heart rate, and gastric emptying responses generated by peripheral delivery of the GLP-1R agonist, exendin-4 (Ex-4), was assessed by comparing responses of chronic supracollicular decerebrate (CD) rats to those of pair-fed intact control rats. Responses driven by hindbrain intracerebroventricular (fourth i.c.v) delivery of Ex-4 were also evaluated. Intraperitoneal Ex-4 (1.2 and 3.0 microg/kg) suppressed glucose intake in both CD rats (5.0+/-1.2 and 4.4+/-1.1 ml ingested) and controls (9.4+/-1.5 and 7.7+/-0.8 ml ingested), compared with intakes after vehicle injections (13.1+/-2.5 and 13.2+/-1.7 ml ingested, respectively). Hindbrain ventricular Ex-4 (0.3 microg) also suppressed food intake in CD rats (4.7+/-0.6 ml ingested) and controls (11.0+/-2.9 ml ingested), compared with vehicle intakes (9.3+/-2.1 and 19.3+/-4.3 ml ingested, respectively). Intraperitoneal Ex-4 (0.12, 1.2, 2.4 microg/kg) reduced gastric emptying rates in a dose-related manner similarly for both CD and control rats. Hypothermia followed ip and fourth i.c.v Ex-4 in awake, behaving controls (0.6 and 1.0 C average suppression) and CD rats (1.5 and 2.5 C average suppression). Intraperitoneal Ex-4 triggered tachycardia in both control and CD rats. Results demonstrate that caudal brainstem processing is sufficient for mediating the suppression of intake, core temperature, and gastric emptying rates as well as tachycardia triggered by peripheral GLP-1R activation and also hindbrain-delivered ligand. Contrary to the literature, hypothalamic/forebrain processing and forebrain-caudal brainstem communication is not required for the observed responses.

摘要

外周胰高血糖素样肽-1受体(GLP-1R)刺激对进食、胃排空及能量反应的影响涉及迷走神经传导和中枢神经系统处理。尽管缺乏旨在确定哪些中枢神经系统区域对GLP-1R反应产生至关重要的研究,但下丘脑/前脑处理被认为对这些影响至关重要。在此,通过比较慢性上丘去大脑(CD)大鼠与配对喂养的完整对照大鼠的反应,评估了延髓尾部对由GLP-1R激动剂艾塞那肽-4(Ex-4)外周给药所产生的食物摄入、核心体温、心率及胃排空反应控制的贡献。还评估了通过后脑脑室内(第四脑室脑室内)注射Ex-4所引发的反应。腹腔注射Ex-4(1.2和3.0微克/千克)可抑制CD大鼠(分别摄入5.0±1.2和4.4±1.1毫升)和对照大鼠(分别摄入9.4±1.5和7.7±0.8毫升)的葡萄糖摄入,相比之下,注射溶媒后的摄入量分别为(13.1±2.5和13.2±1.7毫升)。后脑脑室内注射Ex-4(0.3微克)也可抑制CD大鼠(摄入4.7±0.6毫升)和对照大鼠(摄入11.0±2.9毫升)的食物摄入,相比之下,溶媒摄入量分别为(9.3±2.1和19.3±4.3毫升)。腹腔注射Ex-4(0.12、1.2、2.4微克/千克)以剂量相关方式降低了CD大鼠和对照大鼠的胃排空率。清醒、活动的对照大鼠(平均抑制0.6和1.0摄氏度)和CD大鼠(平均抑制1.5和2.5摄氏度)在腹腔注射和第四脑室脑室内注射Ex-4后出现体温过低。腹腔注射Ex-4在对照大鼠和CD大鼠中均引发心动过速。结果表明,延髓尾部处理足以介导外周GLP-1R激活以及后脑给予配体所引发的摄入抑制、核心体温及胃排空率降低以及心动过速。与文献相反,观察到的反应并不需要下丘脑/前脑处理及前脑-延髓尾部脑干通讯。

相似文献

2
Hindbrain leptin and glucagon-like-peptide-1 receptor signaling interact to suppress food intake in an additive manner.
Int J Obes (Lond). 2012 Dec;36(12):1522-8. doi: 10.1038/ijo.2011.265. Epub 2012 Jan 17.
4
Hindbrain cocaine- and amphetamine-regulated transcript induces hypothermia mediated by GLP-1 receptors.
J Neurosci. 2009 May 27;29(21):6973-81. doi: 10.1523/JNEUROSCI.6144-08.2009.
5
Glucagon-like peptide-1 receptor agonists suppress water intake independent of effects on food intake.
Am J Physiol Regul Integr Comp Physiol. 2011 Dec;301(6):R1755-64. doi: 10.1152/ajpregu.00472.2011. Epub 2011 Oct 5.
7
Long-term metabolic benefits of exenatide in mice are mediated solely via the known glucagon-like peptide 1 receptor.
Am J Physiol Regul Integr Comp Physiol. 2014 Apr 1;306(7):R490-8. doi: 10.1152/ajpregu.00495.2013. Epub 2014 Jan 29.
8
The common hepatic branch of the vagus is not required to mediate the glycemic and food intake suppressive effects of glucagon-like-peptide-1.
Am J Physiol Regul Integr Comp Physiol. 2011 Nov;301(5):R1479-85. doi: 10.1152/ajpregu.00356.2011. Epub 2011 Aug 17.
9
Oxyntomodulin and glucagon-like peptide-1 differentially regulate murine food intake and energy expenditure.
Gastroenterology. 2004 Aug;127(2):546-58. doi: 10.1053/j.gastro.2004.04.063.

引用本文的文献

1
Mechanisms of glucagon-like-peptide 1 in the brain beyond metabolic effects.
Ann Pediatr Endocrinol Metab. 2025 Aug;30(4):165-174. doi: 10.6065/apem.2448320.160. Epub 2025 Aug 31.
2
Amygdala aromatase controls food intake, reward, and thermoregulation.
Mol Metab. 2025 Sep;99:102202. doi: 10.1016/j.molmet.2025.102202. Epub 2025 Jul 9.
4
Vagal oxytocin receptors are necessary for esophageal motility and function.
JCI Insight. 2025 May 22;10(10). doi: 10.1172/jci.insight.190108.
5
Glucagon-like peptide-1 receptor modulates cerebrospinal fluid secretion and intracranial pressure in rats.
Fluids Barriers CNS. 2025 Apr 24;22(1):41. doi: 10.1186/s12987-025-00652-x.
7
Vagal Sensory Gut-Brain Pathways That Control Eating-Satiety and Beyond.
Compr Physiol. 2025 Apr;15(2):e70010. doi: 10.1002/cph4.70010.
8
Glucagon-Like Peptide-1 Links Ingestion, Homeostasis, and the Heart.
Compr Physiol. 2025 Feb;15(1):e7. doi: 10.1002/cph4.7.
10
GLP-1 and Its Analogs: Does Sex Matter?
Endocrinology. 2025 Jan 6;166(2). doi: 10.1210/endocr/bqae165.

本文引用的文献

1
Energetic responses to cold temperatures in rats lacking forebrain-caudal brain stem connections.
Am J Physiol Regul Integr Comp Physiol. 2008 Sep;295(3):R789-98. doi: 10.1152/ajpregu.90394.2008. Epub 2008 Jul 16.
2
Lesion of the lateral parabrachial nucleus attenuates the anorectic effect of peripheral amylin and CCK.
Brain Res. 2007 Aug 8;1162:76-84. doi: 10.1016/j.brainres.2007.06.016. Epub 2007 Jun 16.
3
Glucagon-like peptide 1 stimulates hypothalamic proopiomelanocortin neurons.
J Neurosci. 2007 Jul 4;27(27):7125-9. doi: 10.1523/JNEUROSCI.1025-07.2007.
4
Characterization of brainstem preproglucagon projections to the paraventricular and dorsomedial hypothalamic nuclei.
Brain Res. 2007 May 29;1149:118-26. doi: 10.1016/j.brainres.2007.02.043. Epub 2007 Feb 27.
5
Glucagon-like peptide-1 excites pancreas-projecting preganglionic vagal motoneurons.
Am J Physiol Gastrointest Liver Physiol. 2007 Jun;292(6):G1474-82. doi: 10.1152/ajpgi.00562.2006. Epub 2007 Feb 22.
7
Chemical stimulation of visceral afferents activates medullary neurones projecting to the central amygdala and periaqueductal grey.
Brain Res Bull. 2006 Dec 11;71(1-3):51-9. doi: 10.1016/j.brainresbull.2006.07.016. Epub 2006 Aug 10.
8
Recent evidence of sustained benefit with exenatide in Type 2 diabetes.
Expert Opin Pharmacother. 2006 Oct;7(14):2003-6. doi: 10.1517/14656566.7.14.2003.
10
Exenatide: a new option for the treatment of type 2 diabetes.
Ann Pharmacother. 2006 Oct;40(10):1777-84. doi: 10.1345/aph.1H060. Epub 2006 Sep 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验