Mizumori Misa, Choi Yuri, Guth Paul H, Engel Eli, Kaunitz Jonathan D, Akiba Yasutada
Department of Medicine, School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
Am J Physiol Gastrointest Liver Physiol. 2008 Jun;294(6):G1318-27. doi: 10.1152/ajpgi.00025.2008. Epub 2008 Apr 17.
We hypothesized that the function of duodenocyte apical membrane acid-base transporters are essential for H(+) absorption from the lumen. We thus examined the effect of inhibition of Na(+)/H(+) exchanger-3 (NHE3), cystic fibrosis transmembrane regulator (CFTR), or apical anion exchangers on transmucosal CO(2) diffusion and HCO(3)(-) secretion in rat duodenum. Duodena were perfused with a pH 6.4 high CO(2) solution or pH 2.2 low CO(2) solution with the NHE3 inhibitor, S3226, the anion transport inhibitor, DIDS, or pretreatment with the potent CFTR inhibitor, CFTR(inh)-172, with simultaneous measurements of luminal and portal venous (PV) pH and carbon dioxide concentration ([CO(2)]). Luminal high CO(2) solution increased CO(2) absorption and HCO(3)(-) secretion, accompanied by PV acidification and PV Pco(2) increase. During CO(2) challenge, CFTR(inh)-172 induced HCO(3)(-) absorption, while inhibiting PV acidification. S3226 reversed CFTR(inh)-associated HCO(3)(-) absorption. Luminal pH 2.2 challenge increased H(+) and CO(2) absorption and acidified the PV, inhibited by CFTR(inh)-172 and DIDS, but not by S3226. CFTR inhibition and DIDS reversed HCO(3)(-) secretion to absorption and inhibited PV acidification during CO(2) challenge, suggesting that HCO(3)(-) secretion helps facilitate CO(2)/H(+) absorption. Furthermore, CFTR inhibition prevented CO(2)-induced cellular acidification reversed by S3226. Reversal of increased HCO(3)(-) loss by NHE3 inhibition and reduced intracellular acidification during CFTR inhibition is consistent with activation or unmasking of NHE3 activity by CFTR inhibition, increasing cell surface H(+) available to neutralize luminal HCO(3)(-) with consequent CO(2) absorption. NHE3, by secreting H(+) into the luminal microclimate, facilitates net transmucosal HCO(3)(-) absorption with a mechanism similar to proximal tubular HCO(3)(-) absorption.
我们推测十二指肠细胞顶端膜酸碱转运蛋白的功能对于从肠腔吸收H⁺至关重要。因此,我们研究了抑制钠/氢交换体3(NHE3)、囊性纤维化跨膜传导调节因子(CFTR)或顶端阴离子交换体对大鼠十二指肠跨黏膜CO₂扩散和HCO₃⁻分泌的影响。用pH 6.4的高CO₂溶液或pH 2.2的低CO₂溶液灌注十二指肠,同时加入NHE3抑制剂S3226、阴离子转运抑制剂DIDS,或用强效CFTR抑制剂CFTR(inh)-172进行预处理,并同步测量肠腔和门静脉(PV)的pH值及二氧化碳浓度([CO₂])。肠腔高CO₂溶液增加了CO₂吸收和HCO₃⁻分泌,同时伴有PV酸化和PV Pco₂升高。在CO₂刺激期间,CFTR(inh)-172诱导HCO₃⁻吸收,同时抑制PV酸化。S3226逆转了与CFTR(inh)相关的HCO₃⁻吸收。肠腔pH 2.2刺激增加了H⁺和CO₂吸收并使PV酸化,CFTR(inh)-172和DIDS可抑制此过程,但S3226无此作用。在CO₂刺激期间,CFTR抑制和DIDS使HCO₃⁻分泌逆转为吸收并抑制PV酸化,提示HCO₃⁻分泌有助于促进CO₂/H⁺吸收。此外,CFTR抑制可防止CO₂诱导的细胞酸化,而S3226可逆转此过程。通过抑制NHE3逆转增加的HCO₃⁻丢失以及在CFTR抑制期间减少细胞内酸化,这与CFTR抑制激活或暴露NHE3活性、增加可用于中和肠腔HCO₃⁻的细胞表面H⁺从而促进CO₂吸收是一致的。NHE3通过将H⁺分泌到肠腔微环境中,以类似于近端肾小管HCO₃⁻吸收的机制促进跨黏膜HCO₃⁻的净吸收。