Suppr超能文献

活性益生菌乳酸双歧杆菌可抑制小麦醇溶蛋白在上皮细胞培养中诱导的毒性作用。

Live probiotic Bifidobacterium lactis bacteria inhibit the toxic effects induced by wheat gliadin in epithelial cell culture.

作者信息

Lindfors K, Blomqvist T, Juuti-Uusitalo K, Stenman S, Venäläinen J, Mäki M, Kaukinen K

机构信息

Paediatric Research Centre, Medical School, University of Tampere, Finland, Department of Peadiatrics, Tampere University Hospital, Tampere, Finland.

出版信息

Clin Exp Immunol. 2008 Jun;152(3):552-8. doi: 10.1111/j.1365-2249.2008.03635.x. Epub 2008 Apr 16.

Abstract

Wheat gliadin induces severe intestinal symptoms and small-bowel mucosal damage in coeliac disease patients. At present, the only effective treatment for the disease is a strict life-long gluten-free diet. In this study we investigated whether probiotics Lactobacillus fermentum or Bifidobacterium lactis can inhibit the toxic effects of gliadin in intestinal cell culture conditions. The ability of live probiotics to inhibit peptic-tryptic digested gliadin-induced damage to human colon cells Caco-2 was evaluated by measuring epithelial permeability by transepithelial resistance, actin cytoskeleton arrangements by the extent of membrane ruffling and expression of tight junctional protein ZO-1. B. lactis inhibited the gliadin-induced increase dose-dependently in epithelial permeability, higher concentrations completely abolishing the gliadin-induced decrease in transepithelial resistance. The same bacterial strain also inhibited the formation of membrane ruffles in Caco-2 cells induced by gliadin administration. Furthermore, it also protected the tight junctions of Caco-2 cells against the effects of gliadin, as evinced by the pattern of ZO-1 expression. We conclude thus that live B. lactis bacteria can counteract directly the harmful effects exerted by coeliac-toxic gliadin and would clearly warrant further studies of its potential as a novel dietary supplement in the treatment of coeliac disease.

摘要

小麦醇溶蛋白可在乳糜泻患者中诱发严重的肠道症状和小肠黏膜损伤。目前,针对该疾病唯一有效的治疗方法是严格坚持终身无麸质饮食。在本研究中,我们调查了益生菌发酵乳杆菌或乳酸双歧杆菌是否能在肠道细胞培养条件下抑制醇溶蛋白的毒性作用。通过跨上皮电阻测量上皮通透性、通过膜 ruffling 的程度测量肌动蛋白细胞骨架排列以及紧密连接蛋白 ZO-1 的表达,评估了活益生菌抑制胃蛋白酶 - 胰蛋白酶消化的醇溶蛋白对人结肠细胞 Caco-2 损伤的能力。乳酸双歧杆菌剂量依赖性地抑制了醇溶蛋白诱导的上皮通透性增加,较高浓度完全消除了醇溶蛋白诱导的跨上皮电阻降低。同一菌株还抑制了给予醇溶蛋白后 Caco-2 细胞中膜 ruffles 的形成。此外,如 ZO-1 表达模式所示,它还保护 Caco-2 细胞的紧密连接免受醇溶蛋白的影响。因此,我们得出结论,活的乳酸双歧杆菌可以直接抵消乳糜泻毒性醇溶蛋白所产生的有害影响,显然值得进一步研究其作为治疗乳糜泻的新型膳食补充剂的潜力。

相似文献

1
Live probiotic Bifidobacterium lactis bacteria inhibit the toxic effects induced by wheat gliadin in epithelial cell culture.
Clin Exp Immunol. 2008 Jun;152(3):552-8. doi: 10.1111/j.1365-2249.2008.03635.x. Epub 2008 Apr 16.
2
Degradation of coeliac disease-inducing rye secalin by germinating cereal enzymes: diminishing toxic effects in intestinal epithelial cells.
Clin Exp Immunol. 2010 Aug;161(2):242-9. doi: 10.1111/j.1365-2249.2010.04119.x. Epub 2010 Jun 15.
4
Larazotide acetate regulates epithelial tight junctions in vitro and in vivo.
Peptides. 2012 May;35(1):86-94. doi: 10.1016/j.peptides.2012.02.015. Epub 2012 Feb 27.
5
Probiotics ameliorate the hydrogen peroxide-induced epithelial barrier disruption by a PKC- and MAP kinase-dependent mechanism.
Am J Physiol Gastrointest Liver Physiol. 2008 Apr;294(4):G1060-9. doi: 10.1152/ajpgi.00202.2007. Epub 2008 Feb 21.
8

引用本文的文献

1
UCLM-104 and UCLM-41 Are Promising Candidates to Produce Synbiotic Yogurt.
Food Sci Nutr. 2025 Jun 30;13(7):e70539. doi: 10.1002/fsn3.70539. eCollection 2025 Jul.
2
Celiac Disease-Narrative Review on Progress in Celiac Disease.
Foods. 2025 Mar 11;14(6):959. doi: 10.3390/foods14060959.
4
Intestinal permeability, food antigens and the microbiome: a multifaceted perspective.
Front Allergy. 2025 Jan 9;5:1505834. doi: 10.3389/falgy.2024.1505834. eCollection 2024.
5
The microbiota: a key regulator of health, productivity, and reproductive success in mammals.
Front Microbiol. 2024 Nov 5;15:1480811. doi: 10.3389/fmicb.2024.1480811. eCollection 2024.
6
Probiotics to Prevent Celiac Disease and Inflammatory Bowel Diseases.
Adv Exp Med Biol. 2024;1449:95-111. doi: 10.1007/978-3-031-58572-2_6.
8
Gut microbiota in celiac disease.
Ann Gastroenterol. 2024 Mar-Apr;37(2):125-132. doi: 10.20524/aog.2024.0862. Epub 2024 Feb 9.
9
mechanisms of immune modulation and tolerance.
Gut Microbes. 2023 Dec;15(2):2291164. doi: 10.1080/19490976.2023.2291164. Epub 2023 Dec 6.
10
The Role of Intestinal Microbiota in Celiac Disease and Further Therapeutic Perspectives.
Life (Basel). 2023 Oct 11;13(10):2039. doi: 10.3390/life13102039.

本文引用的文献

1
Genetic background of celiac disease and its clinical implications.
Am J Gastroenterol. 2008 Jan;103(1):190-5. doi: 10.1111/j.1572-0241.2007.01471.x.
2
Combination enzyme therapy for gastric digestion of dietary gluten in patients with celiac sprue.
Gastroenterology. 2007 Aug;133(2):472-80. doi: 10.1053/j.gastro.2007.05.028. Epub 2007 May 21.
3
COX-2: friend or foe?
Curr Pharm Des. 2007;13(16):1715-21. doi: 10.2174/138161207780831293.
4
Highly efficient gluten degradation by lactobacilli and fungal proteases during food processing: new perspectives for celiac disease.
Appl Environ Microbiol. 2007 Jul;73(14):4499-507. doi: 10.1128/AEM.00260-07. Epub 2007 May 18.
6
Soluble proteins produced by probiotic bacteria regulate intestinal epithelial cell survival and growth.
Gastroenterology. 2007 Feb;132(2):562-75. doi: 10.1053/j.gastro.2006.11.022. Epub 2006 Nov 17.
8
Growth factor-like activity of gliadin, an alimentary protein: implications for coeliac disease.
Gut. 2007 Apr;56(4):480-8. doi: 10.1136/gut.2005.086637. Epub 2006 Aug 4.
9
Gliadin, glutenin or both? The search for the Holy Grail in coeliac disease.
Eur J Gastroenterol Hepatol. 2006 Jul;18(7):703-6. doi: 10.1097/01.meg.0000221847.09792.34.
10
Gluten breakdown by lactobacilli and pediococci strains isolated from sourdough.
Lett Appl Microbiol. 2006 May;42(5):459-64. doi: 10.1111/j.1472-765X.2006.01889.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验