Suppr超能文献

小鼠和人类胚胎干细胞分化过程中的染色质重塑

Chromatin remodeling during mouse and human embryonic stem cell differentiation.

作者信息

Golob Jonathan L, Paige Sharon L, Muskheli Veronica, Pabon Lil, Murry Charles E

机构信息

Department of Pathology, Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington 98109, USA.

出版信息

Dev Dyn. 2008 May;237(5):1389-98. doi: 10.1002/dvdy.21545.

Abstract

Embryonic stem cell (ESC) differentiation is an excellent model to study chromatin changes at developmentally regulated loci. Differentiating mouse and human ESCs increase genome-wide acetylation (euchromatic) and tri-methylation (heterochromatic) of lysine 9 on histone H3. The Oct4 locus is euchromatic when expressed in undifferentiated ESCs and heterochromatic after differentiation. Brachyury T, a mesoderm-specific transcription factor, is not yet expressed in undifferentiated cells, where its locus has "bivalent" tri-methyl lysine 4 and lysine 27 modifications. During directed differentiation to pre-cardiac mesoderm, the activated brachyury locus has high levels of tri-methyl lysine 4 (euchromatin), switching to heterochromatin after gene silencing. Thus, ESC differentiation is accompanied by genome-wide commitment to euchromatin or heterochromatin. Undifferentiated hESCs bivalently modify the brachyury locus, activate it to euchromatin during mesoderm induction, and subsequently repress it to heterochromatin, demonstrating, to our knowledge, the first analysis of chromatin dynamics at a locus essential for mesoderm and endoderm differentiation.

摘要

胚胎干细胞(ESC)分化是研究发育调控基因座处染色质变化的绝佳模型。小鼠和人类胚胎干细胞在分化过程中,全基因组范围内组蛋白H3赖氨酸9的乙酰化(常染色质)和三甲基化(异染色质)会增加。Oct4基因座在未分化的胚胎干细胞中表达时呈常染色质状态,分化后则变为异染色质。中胚层特异性转录因子Brachyury T在未分化细胞中尚未表达,其基因座具有“双价”的三甲基赖氨酸4和赖氨酸27修饰。在定向分化为心脏前中胚层的过程中,被激活的Brachyury基因座具有高水平的三甲基赖氨酸4(常染色质),基因沉默后转变为异染色质。因此,胚胎干细胞分化伴随着全基因组向常染色质或异染色质的转变。未分化的人类胚胎干细胞对Brachyury基因座进行双价修饰,在中胚层诱导过程中将其激活为常染色质,随后将其抑制为异染色质,据我们所知,这是对中胚层和内胚层分化所必需的基因座处染色质动力学的首次分析。

相似文献

1
Chromatin remodeling during mouse and human embryonic stem cell differentiation.
Dev Dyn. 2008 May;237(5):1389-98. doi: 10.1002/dvdy.21545.
2
Histone deacetylase activity is required for embryonic stem cell differentiation.
Genesis. 2004 Jan;38(1):32-8. doi: 10.1002/gene.10250.
3
BRACHYURY directs histone acetylation to target loci during mesoderm development.
EMBO Rep. 2018 Jan;19(1):118-134. doi: 10.15252/embr.201744201. Epub 2017 Nov 15.
5
Quantitative Dynamics of Chromatin Remodeling during Germ Cell Specification from Mouse Embryonic Stem Cells.
Cell Stem Cell. 2015 May 7;16(5):517-32. doi: 10.1016/j.stem.2015.03.002. Epub 2015 Mar 19.
7
Genomic targets of Brachyury (T) in differentiating mouse embryonic stem cells.
PLoS One. 2012;7(3):e33346. doi: 10.1371/journal.pone.0033346. Epub 2012 Mar 30.
9
Spatial and temporal expression pattern of germ layer markers during human embryonic stem cell differentiation in embryoid bodies.
Histochem Cell Biol. 2010 May;133(5):595-606. doi: 10.1007/s00418-010-0689-7. Epub 2010 Apr 6.
10
Transcriptional reprogramming and chromatin remodeling accompanies Oct4 and Nanog silencing in mouse trophoblast lineage.
Stem Cells Dev. 2014 Feb 1;23(3):219-29. doi: 10.1089/scd.2013.0328. Epub 2013 Nov 7.

引用本文的文献

1
2
An Epigenetic Role of Mitochondria in Cancer.
Cells. 2022 Aug 13;11(16):2518. doi: 10.3390/cells11162518.
3
Low complexity domains, condensates, and stem cell pluripotency.
World J Stem Cells. 2021 May 26;13(5):416-438. doi: 10.4252/wjsc.v13.i5.416.
4
Mitochondrial cytochrome c shot towards histone chaperone condensates in the nucleus.
FEBS Open Bio. 2021 Sep;11(9):2418-2440. doi: 10.1002/2211-5463.13176. Epub 2021 May 19.
5
Chromatin Regulation in Development: Current Understanding and Approaches.
Stem Cells Int. 2021 Feb 2;2021:8817581. doi: 10.1155/2021/8817581. eCollection 2021.
6
Regulation and Roles of the Nucleolus in Embryonic Stem Cells: From Ribosome Biogenesis to Genome Organization.
Stem Cell Reports. 2020 Dec 8;15(6):1206-1219. doi: 10.1016/j.stemcr.2020.08.012. Epub 2020 Sep 24.
7
Knockdown of formin mDia2 alters lamin B1 levels and increases osteogenesis in stem cells.
Stem Cells. 2020 Jan;38(1):102-117. doi: 10.1002/stem.3098. Epub 2019 Nov 6.
8
Metabolic switching in pluripotent stem cells reorganizes energy metabolism and subcellular organelles.
Exp Cell Res. 2019 Jun 1;379(1):55-64. doi: 10.1016/j.yexcr.2019.03.028. Epub 2019 Mar 25.
9
Cardiac differentiation at an initial low density of human-induced pluripotent stem cells.
In Vitro Cell Dev Biol Anim. 2018 Aug;54(7):513-522. doi: 10.1007/s11626-018-0276-0. Epub 2018 Jul 2.

本文引用的文献

1
2
A chromatin landmark and transcription initiation at most promoters in human cells.
Cell. 2007 Jul 13;130(1):77-88. doi: 10.1016/j.cell.2007.05.042.
4
Epigenetic signatures of stem-cell identity.
Nat Rev Genet. 2007 Apr;8(4):263-71. doi: 10.1038/nrg2046.
5
6
Efficient generation of retinal progenitor cells from human embryonic stem cells.
Proc Natl Acad Sci U S A. 2006 Aug 22;103(34):12769-74. doi: 10.1073/pnas.0601990103. Epub 2006 Aug 14.
7
A bivalent chromatin structure marks key developmental genes in embryonic stem cells.
Cell. 2006 Apr 21;125(2):315-26. doi: 10.1016/j.cell.2006.02.041.
8
Chromatin signatures of pluripotent cell lines.
Nat Cell Biol. 2006 May;8(5):532-8. doi: 10.1038/ncb1403. Epub 2006 Mar 29.
9
Fast chromatin immunoprecipitation assay.
Nucleic Acids Res. 2006 Jan 5;34(1):e2. doi: 10.1093/nar/gnj004.
10
Proliferation of cardiomyocytes derived from human embryonic stem cells is mediated via the IGF/PI 3-kinase/Akt signaling pathway.
J Mol Cell Cardiol. 2005 Dec;39(6):865-73. doi: 10.1016/j.yjmcc.2005.09.007. Epub 2005 Oct 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验