Molina M Luisa, Barrera Francisco N, Encinar José A, Renart M Lourdes, Fernández Asia M, Poveda José A, Santoro Jorge, Bruix Marta, Gavilanes Francisco, Fernández-Ballester Gregorio, Neira José L, González-Ros José M
Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche (Alicante), Spain.
J Biol Chem. 2008 Jun 27;283(26):18076-85. doi: 10.1074/jbc.M710132200. Epub 2008 Apr 22.
The effects of the inactivating peptide from the eukaryotic Shaker BK(+) channel (the ShB peptide) on the prokaryotic KcsA channel have been studied using patch clamp methods. The data show that the peptide induces rapid, N-type inactivation in KcsA through a process that includes functional uncoupling of channel gating. We have also employed saturation transfer difference (STD) NMR methods to map the molecular interactions between the inactivating peptide and its channel target. The results indicate that binding of the ShB peptide to KcsA involves the ortho and meta protons of Tyr(8), which exhibit the strongest STD effects; the C4H in the imidazole ring of His(16); the methyl protons of Val(4), Leu(7), and Leu(10) and the side chain amine protons of one, if not both, the Lys(18) and Lys(19) residues. When a noninactivating ShB-L7E mutant is used in the studies, binding to KcsA is still observed but involves different amino acids. Thus, the strongest STD effects are now seen on the methyl protons of Val(4) and Leu(10), whereas His(16) seems similarly affected as before. Conversely, STD effects on Tyr(8) are strongly diminished, and those on Lys(18) and/or Lys(19) are abolished. Additionally, Fourier transform infrared spectroscopy of KcsA in presence of (13)C-labeled peptide derivatives suggests that the ShB peptide, but not the ShB-L7E mutant, adopts a beta-hairpin structure when bound to the KcsA channel. Indeed, docking such a beta-hairpin structure into an open pore model for K(+) channels to simulate the inactivating peptide/channel complex predicts interactions well in agreement with the experimental observations.
利用膜片钳技术研究了真核生物Shaker BK(+)通道的失活肽(ShB肽)对原核生物KcsA通道的影响。数据表明,该肽通过包括通道门控功能解偶联在内的过程,在KcsA中诱导快速的N型失活。我们还采用饱和转移差(STD)核磁共振方法来绘制失活肽与其通道靶点之间的分子相互作用图谱。结果表明,ShB肽与KcsA的结合涉及Tyr(8)的邻位和间位质子,它们表现出最强的STD效应;His(16)咪唑环中的C4H;Val(4)、Leu(7)和Leu(10)的甲基质子以及Lys(18)和Lys(19)残基中一个(如果不是两个)的侧链胺质子。当在研究中使用非失活的ShB-L7E突变体时,仍观察到与KcsA的结合,但涉及不同的氨基酸。因此,现在在Val(4)和Leu(10)的甲基质子上看到最强的STD效应,而His(16)似乎受到与之前类似的影响。相反,对Tyr(8)的STD效应大大减弱,对Lys(18)和/或Lys(19)的效应则被消除。此外,在存在(13)C标记的肽衍生物的情况下对KcsA进行的傅里叶变换红外光谱表明,ShB肽而非ShB-L7E突变体在与KcsA通道结合时采用β-发夹结构。实际上,将这样的β-发夹结构对接至K(+)通道的开放孔模型中以模拟失活肽/通道复合物,预测的相互作用与实验观察结果非常吻合。