Encinar J A, Fernández A M, Gil-Martín E, Gavilanes F, Albar J P, Ferragut J A, González-Ros J M
Departamento de Neuroqu approximately ímica, Universidad Miguel Hernández, Campus de Elche, 03206 Elche (Alicante), Spain.
Biochem J. 1998 Apr 15;331 ( Pt 2)(Pt 2):497-504. doi: 10.1042/bj3310497.
Previous studies on the interaction between the inactivating peptide of the Shaker B K+ channel (ShB peptide, H2N-MAAVAGLYGLGEDRQHRKKQ) and anionic phospholipid vesicles, used as model targets, have shown that the ShB peptide: (i) binds to the vesicle surface with high affinity; (ii) readily adopts a strongly hydrogen-bonded beta-structure; and (iii) becomes inserted into the hydrophobic bilayer. We now report fluorescence studies showing that the vesicle-inserted ShB peptide is in a monomeric form and, therefore, the observed beta-structure must be intramolecularly hydrogen-bonded to produce a beta-hairpin conformation. Also, additional freeze-fracture and accessibility-to-trypsin studies, which aimed to estimate how deeply and in which orientation the folded monomeric peptide inserts into the model target, have allowed us to build structural models for the target-inserted peptide. In such models, the peptide has been folded near G6 to configure a long beta-hairpin modelled to produce an internal cancellation of net charges in the stretch comprising amino acids 1-16. As to the positively charged C-terminal portion of the ShB peptide (RKKQ), this has been modelled to be in parallel with the anionic membrane surface to facilitate electrostatic interactions. Since the negatively charged surface and the hydrophobic domains in the model vesicle target may partly imitate those present at the inactivation 'entrance' in the channel protein [Kukuljan, M., Labarca, P. and Latorre, R. (1995) Am. J. Physiol. Cell Physiol. 268, C535-C556], we believe that the structural models postulated here for the vesicle-inserted peptide could help to understand how the ShB peptide associates with the channel during inactivation and why mutations at specific sites in the ShB peptide sequence, such as that in the ShB-L7E peptide, result in non-inactivating peptide variants.
此前关于用作模型靶点的Shaker B钾通道失活肽(ShB肽,H2N-MAAVAGLYGLGEDRQHRKKQ)与阴离子磷脂囊泡之间相互作用的研究表明,ShB肽:(i)以高亲和力结合到囊泡表面;(ii)易于形成强氢键结合的β结构;(iii)插入疏水双层膜中。我们现在报告荧光研究结果,显示插入囊泡的ShB肽呈单体形式,因此,观察到的β结构必定是分子内氢键结合以产生β发夹构象。此外,旨在估计折叠的单体肽插入模型靶点的深度和方向的额外冷冻蚀刻和胰蛋白酶可及性研究,使我们能够构建插入靶点的肽的结构模型。在这些模型中,肽在G6附近折叠,形成一个长的β发夹结构,其建模目的是使包含氨基酸1-16的片段中的净电荷内部抵消。至于ShB肽带正电荷的C末端部分(RKKQ),其建模为与阴离子膜表面平行,以促进静电相互作用。由于模型囊泡靶点中的带负电荷表面和疏水结构域可能部分模拟了通道蛋白失活“入口”处的结构[Kukuljan, M., Labarca, P.和Latorre, R.(1995年)《美国生理学杂志:细胞生理学》268卷,C535-C556页],我们认为这里假设的插入囊泡肽的结构模型有助于理解ShB肽在失活过程中如何与通道结合,以及为什么ShB肽序列中特定位点的突变,如ShB-L7E肽中的突变,会导致非失活肽变体。