Multidisciplinary Scientific Nucleus, Center for Bioinformatics and Molecular Simulation; Millennium Nucleus of Ion Channels-associated Diseases (MiNICAD), Universidad de Talca, Talca, Chile; Institute of Computational Comparative Medicine, Nanotechnology Innovation Center of Kansas State, Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas.
Molecular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland.
Biophys J. 2019 Jul 23;117(2):377-387. doi: 10.1016/j.bpj.2019.06.008. Epub 2019 Jun 14.
After opening, the Shaker voltage-gated potassium (K) channel rapidly inactivates when one of its four N-termini enters and occludes the channel pore. Although it is known that the tip of the N-terminus reaches deep into the central cavity, the conformation adopted by this domain during inactivation and the nature of its interactions with the rest of the channel remain unclear. Here, we use molecular dynamics simulations coupled with electrophysiology experiments to reveal the atomic-scale mechanisms of inactivation. We find that the first six amino acids of the N-terminus spontaneously enter the central cavity in an extended conformation, establishing hydrophobic contacts with residues lining the pore. A second portion of the N-terminus, consisting of a long 24 amino acid α-helix, forms numerous polar contacts with residues in the intracellular entryway of the T1 domain. Double mutant cycle analysis revealed a strong relationship between predicted interatomic distances and empirically observed thermodynamic coupling, establishing a plausible model of the transition of K channels to the inactivated state.
Shaker 电压门控钾 (K) 通道打开后,当四个 N 端中的一个进入并阻塞通道孔时,通道会迅速失活。尽管已知 N 端的尖端深入中央腔,但该结构域在失活过程中采用的构象及其与通道其余部分的相互作用性质仍不清楚。在这里,我们使用分子动力学模拟结合电生理学实验来揭示失活的原子尺度机制。我们发现 N 端的前六个氨基酸自发地以伸展构象进入中央腔,与孔内的残基建立疏水接触。N 端的第二部分由一个长 24 个氨基酸的 α-螺旋组成,与 T1 结构域的细胞内入口的残基形成许多极性接触。双突变体循环分析显示预测的原子间距离与经验观察到的热力学偶联之间存在很强的关系,为 K 通道过渡到失活状态建立了一个合理的模型。