Suppr超能文献

电压门控钾通道失活动门的结构模型。

A Structural Model of the Inactivation Gate of Voltage-Activated Potassium Channels.

机构信息

Multidisciplinary Scientific Nucleus, Center for Bioinformatics and Molecular Simulation; Millennium Nucleus of Ion Channels-associated Diseases (MiNICAD), Universidad de Talca, Talca, Chile; Institute of Computational Comparative Medicine, Nanotechnology Innovation Center of Kansas State, Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas.

Molecular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland.

出版信息

Biophys J. 2019 Jul 23;117(2):377-387. doi: 10.1016/j.bpj.2019.06.008. Epub 2019 Jun 14.

Abstract

After opening, the Shaker voltage-gated potassium (K) channel rapidly inactivates when one of its four N-termini enters and occludes the channel pore. Although it is known that the tip of the N-terminus reaches deep into the central cavity, the conformation adopted by this domain during inactivation and the nature of its interactions with the rest of the channel remain unclear. Here, we use molecular dynamics simulations coupled with electrophysiology experiments to reveal the atomic-scale mechanisms of inactivation. We find that the first six amino acids of the N-terminus spontaneously enter the central cavity in an extended conformation, establishing hydrophobic contacts with residues lining the pore. A second portion of the N-terminus, consisting of a long 24 amino acid α-helix, forms numerous polar contacts with residues in the intracellular entryway of the T1 domain. Double mutant cycle analysis revealed a strong relationship between predicted interatomic distances and empirically observed thermodynamic coupling, establishing a plausible model of the transition of K channels to the inactivated state.

摘要

Shaker 电压门控钾 (K) 通道打开后,当四个 N 端中的一个进入并阻塞通道孔时,通道会迅速失活。尽管已知 N 端的尖端深入中央腔,但该结构域在失活过程中采用的构象及其与通道其余部分的相互作用性质仍不清楚。在这里,我们使用分子动力学模拟结合电生理学实验来揭示失活的原子尺度机制。我们发现 N 端的前六个氨基酸自发地以伸展构象进入中央腔,与孔内的残基建立疏水接触。N 端的第二部分由一个长 24 个氨基酸的 α-螺旋组成,与 T1 结构域的细胞内入口的残基形成许多极性接触。双突变体循环分析显示预测的原子间距离与经验观察到的热力学偶联之间存在很强的关系,为 K 通道过渡到失活状态建立了一个合理的模型。

相似文献

1
A Structural Model of the Inactivation Gate of Voltage-Activated Potassium Channels.
Biophys J. 2019 Jul 23;117(2):377-387. doi: 10.1016/j.bpj.2019.06.008. Epub 2019 Jun 14.
2
Isoleucine gate blocks K conduction in C-type inactivation.
Elife. 2024 Nov 12;13:e97696. doi: 10.7554/eLife.97696.
4
Coupling between the voltage-sensing and pore domains in a voltage-gated potassium channel.
Biochim Biophys Acta. 2012 Jul;1818(7):1726-36. doi: 10.1016/j.bbamem.2012.02.029.
7
Regional specificity of human ether-a'-go-go-related gene channel activation and inactivation gating.
J Biol Chem. 2005 Feb 25;280(8):7206-17. doi: 10.1074/jbc.M411042200. Epub 2004 Nov 4.
9
Mechanism of activation at the selectivity filter of the KcsA K channel.
Elife. 2017 Oct 10;6:e25844. doi: 10.7554/eLife.25844.
10
Hydrophobic gasket mutation produces gating pore currents in closed human voltage-gated proton channels.
Proc Natl Acad Sci U S A. 2019 Sep 17;116(38):18951-18961. doi: 10.1073/pnas.1905462116. Epub 2019 Aug 28.

引用本文的文献

1
Structural basis of fast N-type inactivation in K channels.
Nature. 2025 Aug 6. doi: 10.1038/s41586-025-09339-7.
2
Stability of N-type inactivation and the coupling between N-type and C-type inactivation in the Aplysia Kv1 channel.
Pflugers Arch. 2024 Oct;476(10):1493-1516. doi: 10.1007/s00424-024-02982-5. Epub 2024 Jul 15.
3
KV1.2 channels inactivate through a mechanism similar to C-type inactivation.
J Gen Physiol. 2020 Jun 1;152(6). doi: 10.1085/jgp.201912499.

本文引用的文献

2
Effective pore size and radius of capture for K(+) ions in K-channels.
Sci Rep. 2016 Feb 2;6:19893. doi: 10.1038/srep19893.
3
PROPKA3: Consistent Treatment of Internal and Surface Residues in Empirical pKa Predictions.
J Chem Theory Comput. 2011 Feb 8;7(2):525-37. doi: 10.1021/ct100578z. Epub 2011 Jan 6.
4
The TOPCONS web server for consensus prediction of membrane protein topology and signal peptides.
Nucleic Acids Res. 2015 Jul 1;43(W1):W401-7. doi: 10.1093/nar/gkv485. Epub 2015 May 12.
5
JPred4: a protein secondary structure prediction server.
Nucleic Acids Res. 2015 Jul 1;43(W1):W389-94. doi: 10.1093/nar/gkv332. Epub 2015 Apr 16.
6
The I-TASSER Suite: protein structure and function prediction.
Nat Methods. 2015 Jan;12(1):7-8. doi: 10.1038/nmeth.3213.
7
Quasi-specific access of the potassium channel inactivation gate.
Nat Commun. 2014 Jun 9;5:4050. doi: 10.1038/ncomms5050.
8
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.
9
AlignMe--a membrane protein sequence alignment web server.
Nucleic Acids Res. 2014 Jul;42(Web Server issue):W246-51. doi: 10.1093/nar/gku291. Epub 2014 Apr 21.
10
Scalable web services for the PSIPRED Protein Analysis Workbench.
Nucleic Acids Res. 2013 Jul;41(Web Server issue):W349-57. doi: 10.1093/nar/gkt381. Epub 2013 Jun 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验