Suppr超能文献

利用三重测交设计获得的数量性状基因座主效应和互作效应的遗传预期及其与杂种优势分析的相关性。

Genetic expectations of quantitative trait loci main and interaction effects obtained with the triple testcross design and their relevance for the analysis of heterosis.

作者信息

Melchinger A E, Utz H F, Schön C C

机构信息

Institute of Plant Breeding, Seed Science, and Population Genetics, University of Hohenheim, 70599 Stuttgart, Germany.

出版信息

Genetics. 2008 Apr;178(4):2265-74. doi: 10.1534/genetics.107.084871.

Abstract

Interpretation of experimental results from quantitative trait loci (QTL) mapping studies on the predominant type of gene action can be severely affected by the choice of statistical model, experimental design, and provision of epistasis. In this study, we derive quantitative genetic expectations of (i) QTL effects obtained from one-dimensional genome scans with the triple testcross (TTC) design and (ii) pairwise interactions between marker loci using two-way analyses of variance (ANOVA) under the F(2)- and the F(infinity)-metric model. The theoretical results show that genetic expectations of QTL effects estimated with the TTC design are complex, comprising both main and epistatic effects, and that genetic expectations of two-way marker interactions are not straightforward extensions of effects estimated in one-dimensional scans. We also demonstrate that the TTC design can partially overcome the limitations of the design III in separating QTL main effects and their epistatic interactions in the analysis of heterosis and that dominance x additive epistatic interactions of individual QTL with the genetic background can be estimated with a one-dimensional genome scan. Furthermore, we present genetic expectations of variance components for the analysis of TTC progeny tested in a split-plot design, assuming digenic epistasis and arbitrary linkage.

摘要

数量性状基因座(QTL)定位研究中关于主要基因作用类型的实验结果解释,可能会受到统计模型选择、实验设计以及上位性情况的严重影响。在本研究中,我们推导了以下方面的数量遗传学预期:(i)通过三点测交(TTC)设计进行一维基因组扫描获得的QTL效应,以及(ii)在F(2)和F(∞)度量模型下,使用双向方差分析(ANOVA)对标记位点之间的成对相互作用。理论结果表明,用TTC设计估计的QTL效应的遗传学预期很复杂,包括主效应和上位效应,并且双向标记相互作用的遗传学预期并非一维扫描中估计效应的直接扩展。我们还证明,在杂种优势分析中,TTC设计可以部分克服设计III在分离QTL主效应及其上位相互作用方面的局限性,并且可以通过一维基因组扫描估计单个QTL与遗传背景的显性×加性上位相互作用。此外,假设存在双基因上位性和任意连锁,我们给出了在裂区设计中对TTC后代进行分析的方差成分的遗传学预期。

相似文献

3
Analysis of heterosis and quantitative trait loci for kernel shape related traits using triple testcross population in maize.
PLoS One. 2015 Apr 28;10(4):e0124779. doi: 10.1371/journal.pone.0124779. eCollection 2015.
7
A complete solution for dissecting pure main and epistatic effects of QTL in triple testcross design.
PLoS One. 2011;6(9):e24575. doi: 10.1371/journal.pone.0024575. Epub 2011 Sep 19.
8
Quantitative trait loci mapping and the genetic basis of heterosis in maize and rice.
Genetics. 2008 Nov;180(3):1707-24. doi: 10.1534/genetics.107.082867. Epub 2008 Sep 14.
9
Genetic dissection of main and epistatic effects of QTL based on augmented triple test cross design.
PLoS One. 2017 Dec 14;12(12):e0189054. doi: 10.1371/journal.pone.0189054. eCollection 2017.

引用本文的文献

3
Genetic dissection of main and epistatic effects of QTL based on augmented triple test cross design.
PLoS One. 2017 Dec 14;12(12):e0189054. doi: 10.1371/journal.pone.0189054. eCollection 2017.
4
Hybrid Performance of an Immortalized F Rapeseed Population Is Driven by Additive, Dominance, and Epistatic Effects.
Front Plant Sci. 2017 May 18;8:815. doi: 10.3389/fpls.2017.00815. eCollection 2017.
6
Joint genetic analysis using variant sets reveals polygenic gene-context interactions.
PLoS Genet. 2017 Apr 20;13(4):e1006693. doi: 10.1371/journal.pgen.1006693. eCollection 2017 Apr.
10
Extensive heterosis in growth of yeast hybrids is explained by a combination of genetic models.
Heredity (Edinb). 2014 Oct;113(4):316-26. doi: 10.1038/hdy.2014.33. Epub 2014 Apr 2.

本文引用的文献

2
The role of epistasis in the manifestation of heterosis: a systems-oriented approach.
Genetics. 2007 Nov;177(3):1815-25. doi: 10.1534/genetics.107.077537.
3
A unified model for functional and statistical epistasis and its application in quantitative trait Loci analysis.
Genetics. 2007 Jun;176(2):1151-67. doi: 10.1534/genetics.106.067348. Epub 2007 Apr 3.
4
Classical genetic and quantitative trait loci analyses of heterosis in a maize hybrid between two elite inbred lines.
Genetics. 2007 May;176(1):625-44. doi: 10.1534/genetics.106.064493. Epub 2007 Mar 4.
5
Genomewide analysis of epistatic effects for quantitative traits in barley.
Genetics. 2007 Apr;175(4):1955-63. doi: 10.1534/genetics.106.066571. Epub 2007 Feb 4.
6
A Model for the Study of Quantitative Inheritance.
Genetics. 1954 Nov;39(6):883-98. doi: 10.1093/genetics/39.6.883.
8
Regulatory network construction in Arabidopsis by using genome-wide gene expression quantitative trait loci.
Proc Natl Acad Sci U S A. 2007 Jan 30;104(5):1708-13. doi: 10.1073/pnas.0610429104. Epub 2007 Jan 19.
9
Connected populations for detecting quantitative trait loci and testing for epistasis: an application in maize.
Theor Appl Genet. 2006 Jul;113(2):206-24. doi: 10.1007/s00122-006-0287-1. Epub 2006 May 20.
10
Genetic interactions between polymorphisms that affect gene expression in yeast.
Nature. 2005 Aug 4;436(7051):701-3. doi: 10.1038/nature03865.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验