Suppr超能文献

大麦数量性状上位性效应的全基因组分析。

Genomewide analysis of epistatic effects for quantitative traits in barley.

作者信息

Xu Shizhong, Jia Zhenyu

机构信息

Department of Botany and Plant Sciences, University of California, Riverside, California 92521, USA.

出版信息

Genetics. 2007 Apr;175(4):1955-63. doi: 10.1534/genetics.106.066571. Epub 2007 Feb 4.

Abstract

The doubled-haploid (DH) barley population (Harrington x TR306) developed by the North American Barley Genome Mapping Project (NABGMP) for QTL mapping consisted of 145 lines and 127 markers covering a total genome length of 1270 cM. These DH lines were evaluated in approximately 25 environments for seven quantitative traits: heading, height, kernel weight, lodging, maturity, test weight, and yield. We applied an empirical Bayes method that simultaneously estimates 127 main effects for all markers and 127(127-1)/2=8001 interaction effects for all marker pairs in a single model. We found that the largest main-effect QTL (single marker) and the largest epistatic effect (single pair of markers) explained approximately 18 and 2.6% of the phenotypic variance, respectively. On average, the sum of all significant main effects and the sum of all significant epistatic effects contributed 35 and 6% of the total phenotypic variance, respectively. Epistasis seems to be negligible for all the seven traits. We also found that whether two loci interact does not depend on whether or not the loci have individual main effects. This invalidates the common practice of epistatic analysis in which epistatic effects are estimated only for pairs of loci of which both have main effects.

摘要

由北美大麦基因组图谱计划(NABGMP)为进行数量性状基因座(QTL)定位而构建的加倍单倍体(DH)大麦群体(Harrington×TR306)由145个株系和127个标记组成,覆盖的基因组总长度为1270厘摩(cM)。这些DH株系在大约25种环境条件下针对七个数量性状进行了评估,这七个数量性状分别是:抽穗期、株高、粒重、倒伏情况、成熟度、容重和产量。我们应用了一种经验贝叶斯方法,该方法在一个单一模型中同时估计所有标记的127个主效应以及所有标记对的127×(127 - 1)/2 = 8001个互作效应。我们发现,最大的主效应QTL(单个标记)和最大的上位性效应(单个标记对)分别解释了约18%和2.6%的表型变异。平均而言,所有显著主效应的总和以及所有显著上位性效应的总和分别占总表型变异的35%和6%。对于所有这七个性状,上位性似乎可以忽略不计。我们还发现两个基因座是否相互作用并不取决于这些基因座是否具有个体主效应。这使得仅对两个都具有主效应的基因座对估计上位性效应的上位性分析的常规做法无效。

相似文献

1
Genomewide analysis of epistatic effects for quantitative traits in barley.
Genetics. 2007 Apr;175(4):1955-63. doi: 10.1534/genetics.106.066571. Epub 2007 Feb 4.
2
Genotype by environment interaction of quantitative traits: a case study in barley.
G3 (Bethesda). 2012 Jul;2(7):779-88. doi: 10.1534/g3.112.002980. Epub 2012 Jul 1.
4
Capturing pair-wise epistatic effects associated with three agronomic traits in barley.
Genetica. 2018 Apr;146(2):161-170. doi: 10.1007/s10709-018-0008-0. Epub 2018 Jan 18.
5
An empirical Bayes method for estimating epistatic effects of quantitative trait loci.
Biometrics. 2007 Jun;63(2):513-21. doi: 10.1111/j.1541-0420.2006.00711.x.
6
Molecular detection of QTL controlling plant height components in a doubled haploid barley population.
Genet Mol Res. 2014 Apr 17;13(2):3089-99. doi: 10.4238/2014.April.17.5.
9
Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populations.
Theor Appl Genet. 2008 Jan;116(2):243-60. doi: 10.1007/s00122-007-0663-5. Epub 2007 Nov 6.

引用本文的文献

1
Genetic Analysis of Heterosis for Yield Influencing Traits in Using a Doubled Haploid Population and Its Backcross Progenies.
Front Plant Sci. 2021 Sep 16;12:721631. doi: 10.3389/fpls.2021.721631. eCollection 2021.
2
Mapping QTL for seedling morphological and physiological traits under normal and salt treatments in a RIL wheat population.
Theor Appl Genet. 2021 Sep;134(9):2991-3011. doi: 10.1007/s00122-021-03872-5. Epub 2021 Jun 6.
8
Capturing pair-wise epistatic effects associated with three agronomic traits in barley.
Genetica. 2018 Apr;146(2):161-170. doi: 10.1007/s10709-018-0008-0. Epub 2018 Jan 18.
9
The Interactions between the Long Non-coding RNA NERDL and Its Target Gene Affect Wood Formation in .
Front Plant Sci. 2017 Jun 15;8:1035. doi: 10.3389/fpls.2017.01035. eCollection 2017.
10
Bayesian reversible-jump for epistasis analysis in genomic studies.
BMC Genomics. 2016 Dec 9;17(1):1012. doi: 10.1186/s12864-016-3342-6.

本文引用的文献

1
EPISTASIS AND THE EFFECT OF FOUNDER EVENTS ON THE ADDITIVE GENETIC VARIANCE.
Evolution. 1988 May;42(3):441-454. doi: 10.1111/j.1558-5646.1988.tb04151.x.
2
An empirical Bayes method for estimating epistatic effects of quantitative trait loci.
Biometrics. 2007 Jun;63(2):513-21. doi: 10.1111/j.1541-0420.2006.00711.x.
4
Evolution in Mendelian Populations.
Genetics. 1931 Mar;16(2):97-159. doi: 10.1093/genetics/16.2.97.
5
Bayesian analyses of multiple epistatic QTL models for body weight and body composition in mice.
Genet Res. 2006 Feb;87(1):45-60. doi: 10.1017/S0016672306007944.
6
QTL-based evidence for the role of epistasis in evolution.
Genet Res. 2005 Oct;86(2):89-95. doi: 10.1017/S0016672305007780.
7
Epistasis for fitness-related quantitative traits in Arabidopsis thaliana grown in the field and in the greenhouse.
Genetics. 2005 Dec;171(4):2013-27. doi: 10.1534/genetics.105.046078. Epub 2005 Sep 12.
8
Simultaneous mapping of epistatic QTL in DU6i x DBA/2 mice.
Mamm Genome. 2005 Jul;16(7):481-94. doi: 10.1007/s00335-004-2425-4.
9
Bayesian model selection for genome-wide epistatic quantitative trait loci analysis.
Genetics. 2005 Jul;170(3):1333-44. doi: 10.1534/genetics.104.040386. Epub 2005 May 23.
10
Bayesian shrinkage estimation of quantitative trait loci parameters.
Genetics. 2005 May;170(1):465-80. doi: 10.1534/genetics.104.039354. Epub 2005 Mar 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验