Alvarez-Castro José M, Carlborg Orjan
Linnaeus Centre for Bioinformatics, Uppsala University, SE-75124 Uppsala, Sweden.
Genetics. 2007 Jun;176(2):1151-67. doi: 10.1534/genetics.106.067348. Epub 2007 Apr 3.
Interaction between genes, or epistasis, is found to be common and it is a key concept for understanding adaptation and evolution of natural populations, response to selection in breeding programs, and determination of complex disease. Currently, two independent classes of models are used to study epistasis. Statistical models focus on maintaining desired statistical properties for detection and estimation of genetic effects and for the decomposition of genetic variance using average effects of allele substitutions in populations as parameters. Functional models focus on the evolutionary consequences of the attributes of the genotype-phenotype map using natural effects of allele substitutions as parameters. Here we provide a new, general and unified model framework: the natural and orthogonal interactions (NOIA) model. NOIA implements tools for transforming genetic effects measured in one population to the ones of other populations (e.g., between two experimental designs for QTL) and parameters of statistical and functional epistasis into each other (thus enabling us to obtain functional estimates of QTL), as demonstrated numerically. We develop graphical interpretations of functional and statistical models as regressions of the genotypic values on the gene content, which illustrates the difference between the models--the constraint on the slope of the functional regression--and when the models are equivalent. Furthermore, we use our theoretical foundations to conceptually clarify functional and statistical epistasis, discuss the advantages of NOIA over previous theory, and stress the importance of linking functional and statistical models.
基因间的相互作用,即上位性,被发现是普遍存在的,它是理解自然种群的适应与进化、育种计划中对选择的响应以及复杂疾病判定的关键概念。目前,有两类独立的模型用于研究上位性。统计模型侧重于维持所需的统计特性,以便检测和估计遗传效应,并使用群体中等位基因替换的平均效应作为参数来分解遗传方差。功能模型则侧重于以等位基因替换的自然效应为参数,研究基因型 - 表型图谱属性的进化后果。在此,我们提供了一个新的、通用且统一的模型框架:自然正交相互作用(NOIA)模型。如数值所示,NOIA实现了将在一个群体中测量的遗传效应转换为其他群体的遗传效应(例如,在两个数量性状位点实验设计之间),以及将统计和功能上位性的参数相互转换(从而使我们能够获得数量性状位点的功能估计)的工具。我们将功能模型和统计模型解释为基因型值对基因含量的回归,这说明了模型之间的差异——功能回归斜率的约束——以及模型何时等价。此外,我们利用理论基础从概念上阐明功能上位性和统计上位性,讨论NOIA相对于先前理论的优势,并强调将功能模型和统计模型联系起来的重要性。