Suppr超能文献

M@IA:一个用于微阵列工作流程和综合数据挖掘的模块化开源应用程序。

M@IA: a modular open-source application for microarray workflow and integrative datamining.

作者信息

Le Béchec Antony, Zindy Pierre, Sierocinski Thomas, Petritis Dimitri, Bihouée Audrey, Le Meur Nolwenn, Léger Jean, Théret Nathalie

机构信息

INSERM U620, Faculté de Médecine/Pharmacie, Rennes, France.

出版信息

In Silico Biol. 2008;8(1):63-9.

Abstract

Microarray technology is a widely used approach to gene expression analysis. Many tools for microarray management and data analysis have been developed, and recently new methods have been proposed for deciphering biological pathways by integrating microarray data with other data sources. However, to improve microarray analysis and provide meaningful gene interaction networks, integrated software solutions are still needed. Therefore, we developed M@IA, an environment for DNA microarray data analysis allowing gene network reconstruction. M@IA is a microarray integrated application which includes all of the steps of a microarray study, from MIAME-compliant raw data storage and processing gene expression analysis. Furthermore, M@IA allows automatic gene annotation based on ontology, metabolic/signalling pathways, protein interaction, miRNA and transcriptional factor associations, as well as integrative analysis of gene interaction networks. Statistical and graphical methods facilitate analysis, yielding new hypotheses on gene expression data. To illustrate our approach, we applied M@IA modules to microarray data taken from an experiment on liver tissue. We integrated differentially expressed genes with additional biological information, thus identifying new molecular interaction networks that are associated with fibrogenesis. M@IA is a new application for microarray management and data analysis, offering functional insights into microarray data by the combination of gene expression data and biological knowledge annotation based on interactive graphs. M@IA is an interactive multi-user interface based on a flexible modular architecture and it is freely available for academic users at http://maia.genouest.org.

摘要

微阵列技术是一种广泛应用于基因表达分析的方法。目前已经开发了许多用于微阵列管理和数据分析的工具,并且最近还提出了一些新方法,通过将微阵列数据与其他数据源整合来解读生物途径。然而,为了改进微阵列分析并提供有意义的基因相互作用网络,仍然需要集成软件解决方案。因此,我们开发了M@IA,这是一个用于DNA微阵列数据分析的环境,可实现基因网络重建。M@IA是一个微阵列集成应用程序,它涵盖了微阵列研究的所有步骤,从符合MIAME标准的原始数据存储到基因表达分析。此外,M@IA允许基于本体、代谢/信号通路、蛋白质相互作用、miRNA和转录因子关联进行自动基因注释,以及对基因相互作用网络进行综合分析。统计和图形方法有助于分析,从而对基因表达数据产生新的假设。为了说明我们的方法,我们将M@IA模块应用于取自肝脏组织实验的微阵列数据。我们将差异表达基因与其他生物学信息整合在一起,从而识别出与纤维化形成相关的新分子相互作用网络。M@IA是一个用于微阵列管理和数据分析的新应用程序,通过基于交互式图形的基因表达数据和生物学知识注释的组合,为微阵列数据提供功能见解。M@IA是一个基于灵活模块化架构的交互式多用户界面,可供学术用户在http://maia.genouest.org免费使用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验