Cytoskeleton and Cell Plasticity Lab, Life Sciences Research Unit-FSCT, University of Luxembourg, Luxembourg, Luxembourg.
PLoS One. 2012;7(4):e35440. doi: 10.1371/journal.pone.0035440. Epub 2012 Apr 13.
The majority of human cancer deaths are caused by metastasis. The metastatic dissemination is initiated by the breakdown of epithelial cell homeostasis. During this phenomenon, referred to as epithelial to mesenchymal transition (EMT), cells change their genetic and trancriptomic program leading to phenotypic and functional alterations. The challenge of understanding this dynamic process resides in unraveling regulatory networks involving master transcription factors (e.g. SNAI1/2, ZEB1/2 and TWIST1) and microRNAs. Here we investigated microRNAs regulated by SNAI1 and their potential role in the regulatory networks underlying epithelial plasticity.
By a large-scale analysis on epithelial plasticity, we highlighted miR-203 and its molecular link with SNAI1 and the miR-200 family, key regulators of epithelial homeostasis. During SNAI1-induced EMT in MCF7 breast cancer cells, miR-203 and miR-200 family members were repressed in a timely correlated manner. Importantly, miR-203 repressed endogenous SNAI1, forming a double negative miR203/SNAI1 feedback loop. We integrated this novel miR203/SNAI1 with the known miR200/ZEB feedback loops to construct an a priori EMT core network. Dynamic simulations revealed stable epithelial and mesenchymal states, and underscored the crucial role of the miR203/SNAI1 feedback loop in state transitions underlying epithelial plasticity.
By combining computational biology and experimental approaches, we propose a novel EMT core network integrating two fundamental negative feedback loops, miR203/SNAI1 and miR200/ZEB. Altogether our analysis implies that this novel EMT core network could function as a switch controlling epithelial cell plasticity during differentiation and cancer progression.
大多数人类癌症死亡是由转移引起的。转移的扩散是由上皮细胞动态平衡的破坏引发的。在这个被称为上皮-间充质转化(EMT)的过程中,细胞改变其遗传和转录组程序,导致表型和功能的改变。理解这个动态过程的挑战在于揭示涉及主转录因子(如 SNAI1/2、ZEB1/2 和 TWIST1)和 microRNA 的调控网络。在这里,我们研究了受 SNAI1 调控的 microRNA 及其在调控上皮可塑性的调控网络中的潜在作用。
通过对上皮可塑性的大规模分析,我们突出了 miR-203 及其与 SNAI1 和 miR-200 家族的分子联系,这是上皮动态平衡的关键调节因子。在 MCF7 乳腺癌细胞中 SNAI1 诱导的 EMT 过程中,miR-203 和 miR-200 家族成员以时间相关的方式被抑制。重要的是,miR-203 抑制内源性 SNAI1,形成一个负反馈的 miR203/SNAI1 反馈环。我们将这个新的 miR203/SNAI1 与已知的 miR200/ZEB 反馈环整合到一个 EMT 核心网络中。动态模拟显示了稳定的上皮和间充质状态,并强调了 miR203/SNAI1 反馈环在上皮可塑性的状态转换中的关键作用。
通过结合计算生物学和实验方法,我们提出了一个新的 EMT 核心网络,该网络整合了两个基本的负反馈环,miR203/SNAI1 和 miR200/ZEB。总的来说,我们的分析表明,这个新的 EMT 核心网络可以作为一个开关,控制分化和癌症进展过程中上皮细胞的可塑性。