Collier S R, Kanaley J A, Carhart R, Frechette V, Tobin M M, Hall A K, Luckenbaugh A N, Fernhall B
Department of Exercise Science, Syracuse University, Syracuse, NY, USA.
J Hum Hypertens. 2008 Oct;22(10):678-86. doi: 10.1038/jhh.2008.36.
The benefits of aerobic exercise (AE) training on blood pressure (BP) and arterial stiffness are well established, but the effects of resistance training are less well delineated. The purpose of this study was to determine the impact of resistance vs aerobic training on haemodynamics and arterial stiffness. Thirty pre- or stage-1 essential hypertensives (20 men and 10 women), not on any medications, were recruited (age: 48.2 +/- 1.3 years) and randomly assigned to 4 weeks of either resistance (RE) or AE training. Before and after training, BP, arterial stiffness (pulse wave velocity (PWV)) and vasodilatory capacity (VC) were measured. Resting systolic BP (SBP) decreased following both training modes (SBP: RE, pre 136 +/- 2.9 vs. post 132 +/- 3.4; AE, pre 141 +/- 3.8 vs. post 136 +/- 3.4 mm Hg, P = 0.005; diastolic BP: RE, pre 78 +/- 1.3 vs post 74 +/- 1.6; AE, pre 80 +/- 1.6 vs. post 77 +/- 1.7 mm Hg, P = 0.001). Central PWV increased (P = 0.0001) following RE (11 +/- 0.9-12.7 +/- 0.9 ms(-1)) but decreased after AE (12.1 +/- 0.8-11.1 +/- 0.8 m s(-1). Peripheral PWV also increased (P = 0.013) following RE (RE, pre 11.5 +/- 0.8 vs. post 12.5 +/- 0.7 ms(-1)) and decreased after AE (AE, pre 12.6 +/- 0.8 vs post 11.6 +/- 0.7 m s(-1)). The VC area under the curve (VC(AUC)) increased more with RE than that with AE (RE, pre 76 +/- 8.0 vs. post 131.1 +/- 11.6; AE, pre 82.7 +/- 8.0 vs. post 110.1 +/- 11.6 ml per min per s per 100 ml, P = 0.001). Further, peak VC (VCpeak) increased more following resistance training compared to aerobic training (RE, pre 17 +/- 1.9 vs. post 25.8 +/- 2.1; AE, pre 19.2 +/- 8.4 vs post 22.9 +/- 8.4 ml per min per s per 100 ml, P = 0.005). Although both RE and AE training decreased BP, the change in pressure may be due to different mechanisms.
有氧运动(AE)训练对血压(BP)和动脉僵硬度的益处已得到充分证实,但抗阻训练的效果尚不太明确。本研究的目的是确定抗阻训练与有氧运动训练对血流动力学和动脉僵硬度的影响。招募了30名未服用任何药物的高血压前期或1期原发性高血压患者(20名男性和10名女性)(年龄:48.2±1.3岁),并将其随机分配至进行4周的抗阻(RE)训练或有氧运动训练。在训练前后,测量血压、动脉僵硬度(脉搏波速度(PWV))和血管舒张能力(VC)。两种训练模式后静息收缩压(SBP)均降低(SBP:抗阻训练,训练前136±2.9 vs.训练后132±3.4;有氧运动训练,训练前141±3.8 vs.训练后136±3.4 mmHg,P = 0.005;舒张压:抗阻训练,训练前78±1.3 vs.训练后74±1.6;有氧运动训练,训练前80±1.6 vs.训练后77±1.7 mmHg,P = 0.001)。抗阻训练后中心PWV升高(P = 0.0001)(从11±0.9至12.7±0.9 m·s⁻¹),而有氧运动训练后降低(从12.1±0.8至11.1±0.8 m·s⁻¹)。抗阻训练后外周PWV也升高(P = 0.013)(抗阻训练,训练前11.5±0.8 vs.训练后12.5±0.7 m·s⁻¹),有氧运动训练后降低(有氧运动训练,训练前12.6±0.8 vs.训练后11.6±0.7 m·s⁻¹)。抗阻训练后曲线下VC面积(VC(AUC))的增加幅度大于有氧运动训练(抗阻训练,训练前76±8.0 vs.训练后131.1±11.6;有氧运动训练,训练前82.7±8.0 vs.训练后110.1±11.6 ml·min⁻¹·s⁻¹·100 ml,P = 0.001)。此外,与有氧运动训练相比,抗阻训练后峰值VC(VCpeak)的增加幅度更大(抗阻训练,训练前17±1.9 vs.训练后25.8±2.1;有氧运动训练,训练前19.2±8.4 vs.训练后22.9±8.4 ml·min⁻¹·s⁻¹·100 ml,P = 0.005)。虽然抗阻训练和有氧运动训练均降低了血压,但血压变化可能是由于不同机制所致。