Sabanai Ken, Tsutsui Masato, Sakai Akinori, Hirasawa Hideyuki, Tanaka Shinya, Nakamura Eiichiro, Tanimoto Akihide, Sasaguri Yasuyuki, Ito Masako, Shimokawa Hiroaki, Nakamura Toshitaka, Yanagihara Nobuyuki
Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan.
J Bone Miner Res. 2008 May;23(5):633-43. doi: 10.1359/jbmr.080107.
NO is synthesized by three different NO synthase (NOS) isoforms, including neuronal (nNOS), inducible (iNOS) and endothelial NOS (eNOS). The roles of NO in bone metabolism have been extensively investigated in pharmacological studies and in studies with NOS isoform-deficient mice. However, because of the nonspecificity of agents and compensation among the NOS isoforms, the ultimate roles of endogenous NO are still poorly understood. To address this point, we successfully generated mice in which all three NOS genes are completely disrupted. In this study, we examined whether bone metabolism is abnormal in those mice.
Experiments were performed in 12-wk-old male wildtype, singly nNOS(-/-), iNOS(-/-), and eNOS(-/-) and triply n/i/eNOS(-/-) mice. BMD was assessed by DXA. The kinetics of osteoblastic bone formation and those of osteoclastic bone resorption were evaluated by measurements of morphological and biochemical markers.
BMD was significantly higher only in the triply NOS(-/-) mice but not in any singly NOS(-/-) mice compared with the wildtype mice. Markers of osteoblastic bone formation, including bone formation rate, mineral apposition rate, and serum alkaline phosphatase concentration, were also significantly larger only in the triply NOS(-/-) mice compared with wildtype mice. Furthermore, markers of osteoclastic bone resorption, including osteoclast number, osteoclast surface, and urinary deoxypyridinoline excretion, were again significantly greater only in the triply NOS(-/-) mice. Importantly, the renin-angiotensin system in bone was significantly activated in the triply NOS(-/-) mice, and long-term oral treatment with an angiotensin II type 1 (AT(1)) receptor blocker normalized this pathological bone remodeling in those mice.
These results provide the first direct evidence that genetic disruption of the whole NOS system enhances BMD and bone turnover in mice in vivo through the AT(1) receptor pathway, showing the critical role of the endogenous NO/NOS system in maintaining bone homeostasis.
一氧化氮(NO)由三种不同的一氧化氮合酶(NOS)亚型合成,包括神经元型(nNOS)、诱导型(iNOS)和内皮型NOS(eNOS)。在药理学研究以及对NOS亚型缺陷小鼠的研究中,已广泛探讨了NO在骨代谢中的作用。然而,由于所用药物的非特异性以及NOS亚型之间的代偿作用,内源性NO的最终作用仍了解甚少。为解决这一问题,我们成功培育出所有三种NOS基因均被完全破坏的小鼠。在本研究中,我们检测了这些小鼠的骨代谢是否异常。
对12周龄的雄性野生型、单基因nNOS(-/-)、iNOS(-/-)和eNOS(-/-)以及三基因n/i/eNOS(-/-)小鼠进行实验。通过双能X线吸收法(DXA)评估骨密度(BMD)。通过测量形态学和生化标志物来评估成骨细胞骨形成动力学和破骨细胞骨吸收动力学。
与野生型小鼠相比,仅三基因NOS(-/-)小鼠的BMD显著更高,而任何单基因NOS(-/-)小鼠的BMD均无显著差异。与野生型小鼠相比,仅三基因NOS(-/-)小鼠的成骨细胞骨形成标志物,包括骨形成率、矿物质沉积率和血清碱性磷酸酶浓度也显著更高。此外,破骨细胞骨吸收标志物,包括破骨细胞数量、破骨细胞表面积和尿脱氧吡啶啉排泄量,同样仅在三基因NOS(-/-)小鼠中显著更高。重要的是,三基因NOS(-/-)小鼠骨中的肾素-血管紧张素系统被显著激活,长期口服1型血管紧张素II(AT(1))受体阻滞剂可使这些小鼠的这种病理性骨重塑恢复正常。
这些结果提供了首个直接证据,表明整个NOS系统的基因破坏通过AT(1)受体途径增强了小鼠体内的BMD和骨转换,显示了内源性NO/NOS系统在维持骨稳态中的关键作用。