Suppr超能文献

一氧化氮通过调节成骨细胞糖酵解和分化来调节骨代谢。

Nitric oxide modulates bone anabolism through regulation of osteoblast glycolysis and differentiation.

机构信息

Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.

Texas Children's Hospital, Houston, Texas, USA.

出版信息

J Clin Invest. 2021 Mar 1;131(5). doi: 10.1172/JCI138935.

Abstract

Previous studies have shown that nitric oxide (NO) supplements may prevent bone loss and fractures in preclinical models of estrogen deficiency. However, the mechanisms by which NO modulates bone anabolism remain largely unclear. Argininosuccinate lyase (ASL) is the only mammalian enzyme capable of synthesizing arginine, the sole precursor for nitric oxide synthase-dependent (NOS-dependent) NO synthesis. Moreover, ASL is also required for channeling extracellular arginine to NOS for NO production. ASL deficiency (ASLD) is thus a model to study cell-autonomous, NOS-dependent NO deficiency. Here, we report that loss of ASL led to decreased NO production and impairment of osteoblast differentiation. Mechanistically, the bone phenotype was at least in part driven by the loss of NO-mediated activation of the glycolysis pathway in osteoblasts that led to decreased osteoblast differentiation and function. Heterozygous deletion of caveolin 1, a negative regulator of NO synthesis, restored NO production, osteoblast differentiation, glycolysis, and bone mass in a hypomorphic mouse model of ASLD. The translational significance of these preclinical studies was further reiterated by studies conducted in induced pluripotent stem cells from an individual with ASLD. Taken together, our findings suggest that ASLD is a unique genetic model for studying NO-dependent osteoblast function and that the NO/glycolysis pathway may be a new target to modulate bone anabolism.

摘要

先前的研究表明,一氧化氮 (NO) 补充剂可能预防雌激素缺乏的临床前模型中的骨质流失和骨折。然而,NO 调节骨合成代谢的机制在很大程度上仍不清楚。精氨酸琥珀酸裂解酶 (ASL) 是唯一能够合成精氨酸的哺乳动物酶,精氨酸是一氧化氮合酶依赖性 (NOS 依赖性) NO 合成的唯一前体。此外,ASL 还需要将细胞外的精氨酸输送到 NOS 以产生 NO。因此,ASL 缺乏症 (ASLD) 是研究细胞自主、NOS 依赖性 NO 缺乏症的模型。在这里,我们报告称,ASL 的缺失导致 NO 产生减少和破骨细胞分化受损。在机制上,骨表型至少部分是由于 NO 介导的糖酵解途径激活缺失导致破骨细胞分化和功能下降所致。在 ASLD 低功能小鼠模型中, caveolin 1(一种抑制 NO 合成的负调节剂)的杂合缺失恢复了 NO 产生、破骨细胞分化、糖酵解和骨量。对来自 ASLD 个体的诱导多能干细胞进行的研究进一步重申了这些临床前研究的转化意义。总之,我们的研究结果表明,ASLD 是研究 NO 依赖性破骨细胞功能的独特遗传模型,并且 NO/糖酵解途径可能是调节骨合成代谢的新靶点。

相似文献

4
Requirement of argininosuccinate lyase for systemic nitric oxide production.
Nat Med. 2011 Nov 13;17(12):1619-26. doi: 10.1038/nm.2544.
5
Nitric oxide and bone: The phoenix rises again.
J Clin Invest. 2021 Mar 1;131(5). doi: 10.1172/JCI147072.
6
Argininosuccinate Lyase Deficiency Causes an Endothelial-Dependent Form of Hypertension.
Am J Hum Genet. 2018 Aug 2;103(2):276-287. doi: 10.1016/j.ajhg.2018.07.008.
7
Nitric-oxide supplementation for treatment of long-term complications in argininosuccinic aciduria.
Am J Hum Genet. 2012 May 4;90(5):836-46. doi: 10.1016/j.ajhg.2012.03.018. Epub 2012 Apr 26.

引用本文的文献

1
Bone metabolism - an underappreciated player.
NPJ Metab Health Dis. 2024 Jul 1;2(1):12. doi: 10.1038/s44324-024-00010-9.
2
Regenerating aged bone marrow via a nitric oxide nanopump.
Nat Commun. 2025 Jul 1;16(1):5677. doi: 10.1038/s41467-025-61256-5.
4
Cracking the code: Understanding ESWT's role in bone fracture healing.
J Orthop Translat. 2025 Jan 21;50:403-412. doi: 10.1016/j.jot.2024.11.006. eCollection 2025 Jan.
5
Arginine metabolism in myeloid cells in health and disease.
Semin Immunopathol. 2025 Jan 25;47(1):11. doi: 10.1007/s00281-025-01038-9.
8
Metabolic reprogramming in skeletal cell differentiation.
Bone Res. 2024 Oct 11;12(1):57. doi: 10.1038/s41413-024-00374-0.
9
Role of oxytocin in bone.
Front Endocrinol (Lausanne). 2024 Sep 3;15:1450007. doi: 10.3389/fendo.2024.1450007. eCollection 2024.
10
A photothermal responsive system accelerating nitric oxide release to enhance bone repair by promoting osteogenesis and angiogenesis.
Mater Today Bio. 2024 Aug 10;28:101180. doi: 10.1016/j.mtbio.2024.101180. eCollection 2024 Oct.

本文引用的文献

1
Malic Enzyme Couples Mitochondria with Aerobic Glycolysis in Osteoblasts.
Cell Rep. 2020 Sep 8;32(10):108108. doi: 10.1016/j.celrep.2020.108108.
2
Extensive protein S-nitrosylation associated with human pancreatic ductal adenocarcinoma pathogenesis.
Cell Death Dis. 2019 Dec 4;10(12):914. doi: 10.1038/s41419-019-2144-6.
4
ASL Metabolically Regulates Tyrosine Hydroxylase in the Nucleus Locus Coeruleus.
Cell Rep. 2019 Nov 19;29(8):2144-2153.e7. doi: 10.1016/j.celrep.2019.10.043.
5
Increased glycolysis mediates Wnt7b-induced bone formation.
FASEB J. 2019 Jul;33(7):7810-7821. doi: 10.1096/fj.201900201RR. Epub 2019 Mar 26.
6
Argininosuccinate Lyase Deficiency Causes an Endothelial-Dependent Form of Hypertension.
Am J Hum Genet. 2018 Aug 2;103(2):276-287. doi: 10.1016/j.ajhg.2018.07.008.
8
Vhl deletion in osteoblasts boosts cellular glycolysis and improves global glucose metabolism.
J Clin Invest. 2018 Mar 1;128(3):1087-1105. doi: 10.1172/JCI97794. Epub 2018 Feb 12.
10
Glucose metabolism in bone.
Bone. 2018 Oct;115:2-7. doi: 10.1016/j.bone.2017.08.008. Epub 2017 Aug 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验