MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Beijing 100730, China; Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Beijing 100730, China.
J Biol Chem. 2018 Aug 17;293(33):12703-12718. doi: 10.1074/jbc.RA118.003538. Epub 2018 Jun 21.
Host cell infection with HIV-1 requires fusion of viral and cell membranes. Sifuvirtide (SFT) is a peptide-based HIV-1 fusion inhibitor approved for phase III clinical trials in China. Here, we focused on characterizing HIV-1 variants highly resistant to SFT to gain insight into the molecular resistance mechanism. Three primary substitutions (V38A, A47I, and Q52R) located at the inhibitor-binding site of HIV-1's envelope protein (Env) and one secondary substitution (N126K) located at the C-terminal heptad repeat region of the viral protein gp41, which is part of the envelope, conferred high SFT resistance and cross-resistance to the anti-HIV-1 drug T20 and the template peptide C34. Interestingly, SFT's resistance profile could be dramatically improved with an M-T hook structure-modified SFT (MTSFT) and with short-peptide inhibitors that mainly target the gp41 pocket (2P23 and its lipid derivative LP-19). We found that the V38A and Q52R substitutions reduce the binding stabilities of SFT, C34, and MTSFT, but they had no effect on the binding of 2P23 and LP-19; in sharp contrast, the A47I substitution enhanced fusion inhibitor binding. Furthermore, the primary resistance substitutions impaired Env-mediated membrane fusion and cell entry and changed the conformation of the gp41 core structure. Importantly, whereas the V38A and Q52R substitutions disrupted the N-terminal helix of gp41, a single A47I substitution greatly enhanced its thermostability. Taken together, our results provide crucial structural insights into the mechanism of HIV-1 resistance to gp41-dependent fusion inhibitors, which may inform the development of additional anti-HIV drugs.
HIV-1 感染宿主细胞需要病毒和细胞膜融合。西夫韦肽(SFT)是一种基于肽的 HIV-1 融合抑制剂,已在中国获准进行 III 期临床试验。在这里,我们专注于鉴定对 SFT 高度耐药的 HIV-1 变异体,以深入了解分子耐药机制。三个主要取代(V38A、A47I 和 Q52R)位于 HIV-1 包膜蛋白(Env)的抑制剂结合位点,一个次要取代(N126K)位于病毒蛋白 gp41 的 C 末端七肽重复区,该区域是包膜的一部分,赋予了 SFT 高度耐药性和对抗 HIV-1 药物 T20 和模板肽 C34 的交叉耐药性。有趣的是,M-T 钩结构修饰的 SFT(MTSFT)和主要靶向 gp41 口袋的短肽抑制剂(2P23 和其脂质衍生物 LP-19)可显著改善 SFT 的耐药谱。我们发现,V38A 和 Q52R 取代降低了 SFT、C34 和 MTSFT 的结合稳定性,但对 2P23 和 LP-19 的结合没有影响;与此形成鲜明对比的是,A47I 取代增强了融合抑制剂的结合。此外,主要耐药取代破坏了 Env 介导的膜融合和细胞进入,并改变了 gp41 核心结构的构象。重要的是,虽然 V38A 和 Q52R 取代破坏了 gp41 的 N 端螺旋,但单个 A47I 取代大大增强了其热稳定性。总之,我们的结果提供了 HIV-1 对 gp41 依赖性融合抑制剂耐药机制的重要结构见解,这可能为开发其他抗 HIV 药物提供信息。