Vazquez-Laslop Nora, Thum Celine, Mankin Alexander S
Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, 900 South Ashland Avenue, m/c 870, Chicago, IL 60607, USA.
Mol Cell. 2008 Apr 25;30(2):190-202. doi: 10.1016/j.molcel.2008.02.026.
Inducible expression of the erm erythromycin resistance genes relies on drug-dependent ribosome stalling. The molecular mechanisms underlying stalling are unknown. We used a cell-free translation system to elucidate the contribution of the nascent peptide, the drug, and the ribosome toward formation of the stalled complex during translation of the ermC leader cistron. Toe-printing mapping, selective amino acid labeling, and mutational analyses revealed the peptidyl transferase center (PTC) as the focal point of the stalling mechanism. In the ribosome exit tunnel, the C-terminal sequence of the nascent peptide, critical for stalling, is in the immediate vicinity of the universally conserved A2062 of 23S rRNA. Mutations of this nucleotide eliminate stalling. Because A2062 is located in the tunnel, it may trigger a conformational change in the PTC, responding to the presence of a specific nascent peptide. The cladinose-containing macrolide antibiotic in the tunnel positions the nascent peptide for interaction with the tunnel sensory elements.
红霉素抗性基因erm的可诱导表达依赖于药物依赖性核糖体停滞。停滞背后的分子机制尚不清楚。我们使用无细胞翻译系统来阐明新生肽、药物和核糖体在ermC前导顺反子翻译过程中对停滞复合物形成的贡献。足迹图谱、选择性氨基酸标记和突变分析表明肽基转移酶中心(PTC)是停滞机制的焦点。在核糖体出口通道中,对停滞至关重要的新生肽的C末端序列紧邻23S rRNA普遍保守的A2062。该核苷酸的突变消除了停滞。由于A2062位于通道中,它可能会触发PTC的构象变化,以响应特定新生肽的存在。通道中的含克拉定糖大环内酯抗生素将新生肽定位,以便与通道传感元件相互作用。