Suppr超能文献

脑磁共振图像部分容积分割的统一框架。

A unifying framework for partial volume segmentation of brain MR images.

作者信息

Van Leemput Koen, Maes Frederik, Vandermeulen Dirk, Suetens Paul

机构信息

Medical Image Computing (Radiology-ESAT/PSI), Faculty of Medicine, University Hospital Gasthuisberg, Leuven, Belgium.

出版信息

IEEE Trans Med Imaging. 2003 Jan;22(1):105-19. doi: 10.1109/TMI.2002.806587.

Abstract

Accurate brain tissue segmentation by intensity-based voxel classification of magnetic resonance (MR) images is complicated by partial volume (PV) voxels that contain a mixture of two or more tissue types. In this paper, we present a statistical framework for PV segmentation that encompasses and extends existing techniques. We start from a commonly used parametric statistical image model in which each voxel belongs to one single tissue type, and introduce an additional downsampling step that causes partial voluming along the borders between tissues. An expectation-maximization approach is used to simultaneously estimate the parameters of the resulting model and perform a PV classification. We present results on well-chosen simulated images and on real MR images of the brain, and demonstrate that the use of appropriate spatial prior knowledge not only improves the classifications, but is often indispensable for robust parameter estimation as well. We conclude that general robust PV segmentation of MR brain images requires statistical models that describe the spatial distribution of brain tissues more accurately than currently available models.

摘要

基于强度的磁共振(MR)图像体素分类进行准确的脑组织分割,因包含两种或更多组织类型混合的部分容积(PV)体素而变得复杂。在本文中,我们提出了一种用于PV分割的统计框架,该框架涵盖并扩展了现有技术。我们从一个常用的参数统计图像模型开始,其中每个体素属于单一组织类型,并引入一个额外的下采样步骤,该步骤会导致沿组织边界的部分容积现象。采用期望最大化方法来同时估计所得模型的参数并进行PV分类。我们在精心挑选的模拟图像和真实脑MR图像上展示了结果,并证明使用适当的空间先验知识不仅能改善分类,而且对于稳健的参数估计通常也是必不可少的。我们得出结论,MR脑图像的一般稳健PV分割需要比现有模型更准确地描述脑组织空间分布的统计模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验