Suppr超能文献

基于图谱的模糊连接性分割及强度非均匀性校正应用于脑部磁共振成像

Atlas-based fuzzy connectedness segmentation and intensity nonuniformity correction applied to brain MRI.

作者信息

Zhou Yongxin, Bai Jing

机构信息

Department of Biomedical Engineering, Tsinghua University, Beijing 100084, China.

出版信息

IEEE Trans Biomed Eng. 2007 Jan;54(1):122-9. doi: 10.1109/TBME.2006.884645.

Abstract

A framework that combines atlas registration, fuzzy connectedness (FC) segmentation, and parametric bias field correction (PABIC) is proposed for the automatic segmentation of brain magnetic resonance imaging (MRI). First, the atlas is registered onto the MRI to initialize the following FC segmentation. Original techniques are proposed to estimate necessary initial parameters of FC segmentation. Further, the result of the FC segmentation is utilized to initialize a following PABIC algorithm. Finally, we re-apply the FC technique on the PABIC corrected MRI to get the final segmentation. Thus, we avoid expert human intervention and provide a fully automatic method for brain MRI segmentation. Experiments on both simulated and real MRI images demonstrate the validity of the method, as well as the limitation of the method. Being a fully automatic method, it is expected to find wide applications, such as three-dimensional visualization, radiation therapy planning, and medical database construction.

摘要

提出了一种结合图谱配准、模糊连通性(FC)分割和参数化偏置场校正(PABIC)的框架,用于脑磁共振成像(MRI)的自动分割。首先,将图谱配准到MRI上,以初始化后续的FC分割。提出了原始技术来估计FC分割所需的初始参数。此外,FC分割的结果被用于初始化后续的PABIC算法。最后,我们在PABIC校正后的MRI上重新应用FC技术以获得最终分割。因此,我们避免了专家人工干预,并提供了一种用于脑MRI分割的全自动方法。在模拟和真实MRI图像上进行的实验证明了该方法的有效性以及该方法的局限性。作为一种全自动方法,预计它将有广泛的应用,如三维可视化、放射治疗计划和医学数据库建设。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验