Zhou Yongxin, Bai Jing
Department of Biomedical Engineering, Tsinghua University, Beijing 100084, China.
IEEE Trans Biomed Eng. 2007 Jan;54(1):122-9. doi: 10.1109/TBME.2006.884645.
A framework that combines atlas registration, fuzzy connectedness (FC) segmentation, and parametric bias field correction (PABIC) is proposed for the automatic segmentation of brain magnetic resonance imaging (MRI). First, the atlas is registered onto the MRI to initialize the following FC segmentation. Original techniques are proposed to estimate necessary initial parameters of FC segmentation. Further, the result of the FC segmentation is utilized to initialize a following PABIC algorithm. Finally, we re-apply the FC technique on the PABIC corrected MRI to get the final segmentation. Thus, we avoid expert human intervention and provide a fully automatic method for brain MRI segmentation. Experiments on both simulated and real MRI images demonstrate the validity of the method, as well as the limitation of the method. Being a fully automatic method, it is expected to find wide applications, such as three-dimensional visualization, radiation therapy planning, and medical database construction.
提出了一种结合图谱配准、模糊连通性(FC)分割和参数化偏置场校正(PABIC)的框架,用于脑磁共振成像(MRI)的自动分割。首先,将图谱配准到MRI上,以初始化后续的FC分割。提出了原始技术来估计FC分割所需的初始参数。此外,FC分割的结果被用于初始化后续的PABIC算法。最后,我们在PABIC校正后的MRI上重新应用FC技术以获得最终分割。因此,我们避免了专家人工干预,并提供了一种用于脑MRI分割的全自动方法。在模拟和真实MRI图像上进行的实验证明了该方法的有效性以及该方法的局限性。作为一种全自动方法,预计它将有广泛的应用,如三维可视化、放射治疗计划和医学数据库建设。