Tristan-Vega Antonio, Arribas Juan Ignacio
Department of Teoría de la Señal y Comunicaciones, University of Valladolid, 47011 Valladolid, Spain.
IEEE Trans Biomed Eng. 2008 May;55(5):1463-76. doi: 10.1109/TBME.2008.918554.
An end-to-end system to automate the well-known Tanner--Whitehouse (TW3) clinical procedure to estimate the skeletal age in childhood is proposed. The system comprises the detailed analysis of the two most important bones in TW3: the radius and ulna wrist bones. First, a modified version of an adaptive clustering segmentation algorithm is presented to properly semi-automatically segment the contour of the bones. Second, up to 89 features are defined and extracted from bone contours and gray scale information inside the contour, followed by some well-founded feature selection mathematical criteria, based on the ideas of maximizing the classes' separability. Third, bone age is estimated with the help of a Generalized Softmax Perceptron (GSP) neural network (NN) that, after supervised learning and optimal complexity estimation via the application of the recently developed Posterior Probability Model Selection (PPMS) algorithm, is able to accurately predict the different development stages in both radius and ulna from which and with the help of the TW3 methodology, we are able to conveniently score and estimate the bone age of a patient in years, in what can be understood as a multiple-class (multiple stages) pattern recognition approach with posterior probability estimation. Finally, numerical results are presented to evaluate the system performance in predicting the bone stages and the final patient bone age over a private hand image database, with the help of the pediatricians and the radiologists expert diagnoses.
提出了一种端到端系统,用于自动执行著名的坦纳-怀特豪斯(TW3)临床程序,以估计儿童的骨骼年龄。该系统包括对TW3中两个最重要的骨骼:桡骨和尺骨腕骨进行详细分析。首先,提出了一种自适应聚类分割算法的改进版本,以正确地半自动分割骨骼轮廓。其次,从骨骼轮廓和轮廓内的灰度信息中定义并提取多达89个特征,然后基于最大化类间可分离性的思想,采用一些有充分依据的特征选择数学标准。第三,借助广义Softmax感知器(GSP)神经网络(NN)估计骨骼年龄,该神经网络在通过应用最近开发的后验概率模型选择(PPMS)算法进行监督学习和最优复杂度估计后,能够准确预测桡骨和尺骨的不同发育阶段,并借助TW3方法,我们能够方便地以年为单位对患者的骨骼年龄进行评分和估计,这可以理解为一种具有后验概率估计的多类(多阶段)模式识别方法。最后,给出了数值结果,以借助儿科医生和放射科医生的专家诊断,评估该系统在预测骨骼阶段和最终患者骨骼年龄方面在一个私人手部图像数据库上的性能。