Saavedra De Bast Manuel, Mine Natacha, Van Melderen Laurence
Laboratoire de Génétique et Physiologie Bactérienne, Institut de Biologie et Médecine Moléculaires, Université Libre de Bruxelles, 12 rue des Professeurs Jeener et Brachet, B : 6041 Gosselies, Belgium.
J Bacteriol. 2008 Jul;190(13):4603-9. doi: 10.1128/JB.00357-08. Epub 2008 Apr 25.
Toxin-antitoxin (TA) systems are widespread among bacterial chromosomes and mobile genetic elements. Although in plasmids TA systems have a clear role in their vertical inheritance by selectively killing plasmid-free daughter cells (postsegregational killing or addiction phenomenon), the physiological role of chromosomally encoded ones remains under debate. The assumption that chromosomally encoded TA systems are part of stress response networks and/or programmed cell death machinery has been called into question recently by the observation that none of the five canonical chromosomally encoded TA systems in the Escherichia coli chromosome seem to confer any selective advantage under stressful conditions (V. Tsilibaris, G. Maenhaut-Michel, N. Mine, and L. Van Melderen, J. Bacteriol. 189:6101-6108, 2007). Their prevalence in bacterial chromosomes indicates that they might have been acquired through horizontal gene transfer. Once integrated in chromosomes, they might in turn interfere with their homologues encoded by mobile genetic elements. In this work, we show that the chromosomally encoded Erwinia chrysanthemi ccd (control of cell death) (ccd(Ech)) system indeed protects the cell against postsegregational killing mediated by its F-plasmid ccd (ccd(F)) homologue. Moreover, competition experiments have shown that this system confers a fitness advantage under postsegregational conditions mediated by the ccd(F) system. We propose that ccd(Ech) acts as an antiaddiction module and, more generally, that the integration of TA systems in bacterial chromosomes could drive the evolution of plasmid-encoded ones and select toxins that are no longer recognized by the antiaddiction module.
毒素 - 抗毒素(TA)系统广泛存在于细菌染色体和可移动遗传元件中。虽然在质粒中,TA系统通过选择性杀死不含质粒的子代细胞(后分离杀伤或成瘾现象)在其垂直遗传中发挥着明确作用,但染色体编码的TA系统的生理作用仍存在争议。最近的观察结果对染色体编码的TA系统是应激反应网络和/或程序性细胞死亡机制的一部分这一假设提出了质疑,即大肠杆菌染色体中的五个典型染色体编码TA系统似乎在应激条件下都没有赋予任何选择性优势(V. Tsilibaris、G. Maenhaut - Michel、N. Mine和L. Van Melderen,《细菌学杂志》189:6101 - 6108,2007)。它们在细菌染色体中的普遍存在表明它们可能是通过水平基因转移获得的。一旦整合到染色体中,它们可能反过来干扰由可移动遗传元件编码的同源物。在这项研究中,我们表明染色体编码的菊欧文氏菌ccd(细胞死亡控制)(ccd(Ech))系统确实能保护细胞免受其F质粒ccd(ccd(F))同源物介导的后分离杀伤。此外,竞争实验表明,该系统在由ccd(F)系统介导的后分离条件下赋予了适应性优势。我们提出ccd(Ech)作为一种抗成瘾模块,更普遍地说,TA系统在细菌染色体中的整合可能推动质粒编码的TA系统的进化,并选择不再被抗成瘾模块识别的毒素。