Suppr超能文献

基于局部拓扑结构的方差控制正则化迭代反卷积在PET中的部分容积效应校正

Partial volume effect correction in PET using regularized iterative deconvolution with variance control based on local topology.

作者信息

Kirov A S, Piao J Z, Schmidtlein C R

机构信息

Memorial Sloan-Kettering Cancer Center, New York, NY 11021, USA.

出版信息

Phys Med Biol. 2008 May 21;53(10):2577-91. doi: 10.1088/0031-9155/53/10/009. Epub 2008 Apr 25.

Abstract

Correcting positron emission tomography (PET) images for the partial volume effect (PVE) due to the limited resolution of PET has been a long-standing challenge. Various approaches including incorporation of the system response function in the reconstruction have been previously tested. We present a post-reconstruction PVE correction based on iterative deconvolution using a 3D maximum likelihood expectation-maximization (MLEM) algorithm. To achieve convergence we used a one step late (OSL) regularization procedure based on the assumption of local monotonic behavior of the PET signal following Alenius et al. This technique was further modified to selectively control variance depending on the local topology of the PET image. No prior 'anatomic' information is needed in this approach. An estimate of the noise properties of the image is used instead. The procedure was tested for symmetric and isotropic deconvolution functions with Gaussian shape and full width at half-maximum (FWHM) ranging from 6.31 mm to infinity. The method was applied to simulated and experimental scans of the NEMA NU 2 image quality phantom with the GE Discovery LS PET/CT scanner. The phantom contained uniform activity spheres with diameters ranging from 1 cm to 3.7 cm within uniform background. The optimal sphere activity to variance ratio was obtained when the deconvolution function was replaced by a step function few voxels wide. In this case, the deconvolution method converged in approximately 3-5 iterations for most points on both the simulated and experimental images. For the 1 cm diameter sphere, the contrast recovery improved from 12% to 36% in the simulated and from 21% to 55% in the experimental data. Recovery coefficients between 80% and 120% were obtained for all larger spheres, except for the 13 mm diameter sphere in the simulated scan (68%). No increase in variance was observed except for a few voxels neighboring strong activity gradients and inside the largest spheres. Testing the method for patient images increased the visibility of small lesions in non-uniform background and preserved the overall image quality. Regularized iterative deconvolution with variance control based on the local properties of the PET image and on estimated image noise is a promising approach for partial volume effect corrections in PET.

摘要

由于正电子发射断层扫描(PET)分辨率有限,对PET图像进行部分容积效应(PVE)校正一直是一项长期挑战。此前已测试过各种方法,包括在重建过程中纳入系统响应函数。我们提出一种基于迭代反卷积的重建后PVE校正方法,使用三维最大似然期望最大化(MLEM)算法。为实现收敛,我们基于阿莱纽斯等人提出的PET信号局部单调行为假设,采用了一步延迟(OSL)正则化程序。该技术进一步改进,以根据PET图像的局部拓扑结构选择性地控制方差。此方法无需先验“解剖”信息,而是使用图像噪声特性的估计值。该程序针对具有高斯形状且半高宽(FWHM)范围从6.31毫米到无穷大的对称和各向同性反卷积函数进行了测试。该方法应用于使用GE Discovery LS PET/CT扫描仪对NEMA NU 2图像质量体模进行的模拟和实验扫描。体模在均匀背景中包含直径从1厘米到3.7厘米的均匀活性球体。当反卷积函数被替换为宽度为几个体素的阶跃函数时,获得了最佳的球体活性与方差比。在这种情况下,反卷积方法在模拟图像和实验图像上的大多数点大约经过3至5次迭代收敛。对于直径1厘米的球体,模拟数据中的对比度恢复从12%提高到36%,实验数据中从21%提高到55%。除模拟扫描中直径13毫米球体(68%)外,所有较大球体的恢复系数在80%至120%之间。除了与强活性梯度相邻的少数体素和最大球体内部外,未观察到方差增加。对患者图像测试该方法提高了非均匀背景中小病变的可见性,并保留了整体图像质量。基于PET图像局部特性和估计图像噪声进行方差控制的正则化迭代反卷积是PET中部分容积效应校正的一种有前景的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验