Li Li, Chen Chang-Hong, Huang Cheng, Huang Hai-Ying, Li Zuo-Pan, Fu Joshua S, Jang Carey J, Streets David G
Shanghai Academy of Environmental Sciences, Shanghai 200233, China.
Huan Jing Ke Xue. 2008 Jan;29(1):237-45.
Based on the TRACE-P emission data and a Shanghai local emission inventory, the regional air quality model Models-3/CMAQ was applied with the mesoscale model MM5 to simulate the distribution and transport status of O3 and PM10 in the Yangtze River Delta (YRD) in January and July 2001. Ten days' hourly monitoring data at Shanghai monitoring sites were used to verify the model performance. Results show that the correlation coefficients between monitoring and simulation data of O3 and PM10 are 0.77 and 0.52, and the indices of agreement reach 0.81 and 0.99, respectively. The Models-3 simulation shows a 27% underestimation of the maximum O3 hourly concentration, but performs well in average O3 hourly concentration simulation with a normalized bias of -3.1%. The model shows a 10% underestimation of the average PM10 hourly concentration, with a normalized bias of 46%. Models-3/CMAQ has the ability to simulate the processes of air pollution transport in the YRD, and the model results are acceptable. Among the 16 major cities of the YRD, the maximum O3 hourly concentrations in 14 cities exceed the class II Chinese National Ambient Air Quality Standard (CNAAQS). The high O3 concentration area covers most of the south Jiangsu and north Zhejiang Province. Influenced by local emissions and northerly air pollution transport, the daily average concentrations in Taizhou, Yangzhou, Nanjing, Zhenjiang and Changzhou cities during January of 2001 exceed the Class II national standard. Air pollution transport and chemical transformation are quite obvious in the YRD. In summer, under strong radiation conditions, the air pollutants emitted from southern cities usually impose a negative impact on the downwind cities, due to secondary pollution formation; while under weak radiation conditions, the pollutants impact the surrounding area with primary pollution. In winter, the particle pollution level in the YRD is relatively high, which is closely related to the transportation of particulates from the north area to the YRD. The air pollution in the YRD has developed as a regional problem, rather than just a local one.
基于TRACE - P排放数据和上海本地排放清单,区域空气质量模型Models - 3/CMAQ与中尺度模型MM5联合应用,模拟了2001年1月和7月长江三角洲地区臭氧(O3)和可吸入颗粒物(PM10)的分布及传输状况。利用上海监测站点10天的逐小时监测数据对模型性能进行验证。结果表明,O3和PM10监测数据与模拟数据之间的相关系数分别为0.77和0.52,一致性指数分别达到0.81和0.99。Models - 3模拟结果显示,O3每小时最大浓度被低估了27%,但在O3每小时平均浓度模拟方面表现良好,归一化偏差为 - 3.1%。该模型显示PM10每小时平均浓度被低估了10%,归一化偏差为46%。Models - 3/CMAQ有能力模拟长江三角洲地区的空气污染传输过程,且模型结果可以接受。在长江三角洲地区的16个主要城市中,14个城市的O3每小时最大浓度超过中国国家环境空气质量二级标准(CNAAQS)。高O3浓度区域覆盖了苏南和浙北的大部分地区。受本地排放和北方空气污染传输的影响,2001年1月泰州、扬州、南京、镇江和常州等城市的日平均浓度超过国家二级标准。长江三角洲地区的空气污染传输和化学转化十分明显。在夏季,在强辐射条件下,南方城市排放的空气污染物通常会因二次污染的形成而对下风方向的城市产生负面影响;而在弱辐射条件下,污染物以一次污染的形式影响周边地区。在冬季,长江三角洲地区的颗粒物污染水平相对较高,这与北方地区颗粒物向长江三角洲地区的传输密切相关。长江三角洲地区的空气污染已发展成为一个区域性问题,而非仅仅是局部问题。