Department of Biochemistry, The University of Mississippi Medical Center, Jackson, Mississippi 39216-4505, USA.
Acc Chem Res. 2008 Jun;41(6):730-8. doi: 10.1021/ar700252c.
Electron transfer (ET) through and between proteins is a fundamental biological process. The rates of ET depend upon the thermodynamic driving force, the reorganization energy, and the degree of electronic coupling between the reactant and product states. The analysis of protein ET reactions is complicated by the fact that non-ET processes might influence the observed ET rate in kinetically complex biological systems. This Account describes studies of the methylamine dehydrogenase-amicyanin-cytochrome c-551i protein ET complex that have revealed the influence of several features of the protein structure on the magnitudes of the physical parameters for true ET reactions and how they dictate the kinetic mechanisms of non-ET processes that sometimes influence protein ET reactions. Kinetic and thermodynamic studies, coupled with structural information and biochemical data, are necessary to fully describe the ET reactions of proteins. Site-directed mutagenesis can be used to elucidate specific structure-function relationships. When mutations selectively alter the electronic coupling, reorganization energy, or driving force for the ET reaction, it becomes possible to use the parameters of the ET process to determine how specific amino acid residues and other features of the protein structure influence the ET rates. When mutations alter the kinetic mechanism for ET, one can determine the mechanisms by which non-ET processes, such as protein conformational changes or proton transfers, control the rates of ET reactions and how specific amino acid residues and certain features of the protein structure influence these non-ET reactions. A complete description of the mechanism of regulation of biological ET reactions enhances our understanding of metabolism, respiration, and photosynthesis at the molecular level. Such information has important medical relevance. Defective protein ET leads to production of the reactive oxygen species and free radicals that are associated with aging and many disease states. Defective ET within the respiratory chain also causes certain mitochondrial myopathies. An understanding of the mechanisms of regulation of protein ET is also of practical value because it provides a logical basis for the design of applications utilizing redox enzymes, such as enzyme-based electrode sensors and fuel cells.
电子转移(ET)在蛋白质内和蛋白质间是一个基本的生物过程。ET 的速率取决于热力学驱动力、重组能以及反应物和产物状态之间的电子耦合程度。在动力学复杂的生物系统中,非 ET 过程可能会影响观察到的 ET 速率,这使得对蛋白质 ET 反应的分析变得复杂。本说明描述了对甲胺脱氢酶-蓝细菌视紫红质-细胞色素 c-551i 蛋白质 ET 复合物的研究,这些研究揭示了蛋白质结构的几个特征对真实 ET 反应物理参数大小的影响,以及它们如何决定有时会影响蛋白质 ET 反应的非 ET 过程的动力学机制。动力学和热力学研究,加上结构信息和生化数据,对于充分描述蛋白质的 ET 反应是必要的。定点突变可以用于阐明特定的结构-功能关系。当突变选择性地改变 ET 反应的电子耦合、重组能或驱动力时,就可以使用 ET 过程的参数来确定特定的氨基酸残基和蛋白质结构的其他特征如何影响 ET 速率。当突变改变 ET 的动力学机制时,可以确定非 ET 过程(如蛋白质构象变化或质子转移)控制 ET 反应速率的机制,以及特定的氨基酸残基和蛋白质结构的某些特征如何影响这些非 ET 反应。对生物 ET 反应调节机制的完整描述增强了我们对代谢、呼吸和光合作用在分子水平上的理解。这种信息具有重要的医学相关性。蛋白质 ET 缺陷会导致活性氧和自由基的产生,这些物质与衰老和许多疾病状态有关。呼吸链中的 ET 缺陷也会导致某些线粒体肌病。对蛋白质 ET 调节机制的理解也具有实际价值,因为它为利用氧化还原酶的应用(如基于酶的电极传感器和燃料电池)提供了逻辑基础。