Suppr超能文献

基于受体的建模与三维定量构效关系研究:基于遗传算法定量生成丁酰胆碱酯酶抑制剂

Receptor-based modeling and 3D-QSAR for a quantitative production of the butyrylcholinesterase inhibitors based on genetic algorithm.

作者信息

Zaheer-ul Haq, Uddin Reaz, Yuan Hongbin, Petukhov Pavel A, Choudhary M Iqbal, Madura Jeffry D

机构信息

Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical & Biological Sciences, University of Karachi, Karachi 75270, Pakistan.

出版信息

J Chem Inf Model. 2008 May;48(5):1092-103. doi: 10.1021/ci8000056. Epub 2008 Apr 29.

Abstract

Three-dimensional quantitative structure-activity relationship (3D-QSAR) models have been constructed using the comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) for a series of structurally related steroidal alkaloids as butyrylcholinesterase (BuChE) inhibitors. Docking studies were employed to position the inhibitors into the BuChE active site to determine the most probable binding mode. The strategy was to explore multiple inhibitor conformations in producing a more reliable 3D-QSAR model. These multiple conformations were derived using the FlexS program. The conformation selection step for CoMFA was done by genetic algorithm. The genetic algorithm based CoMFA approach was found to be the best. Both CoMFA and CoMSIA yielded significant cross-validated q(2) values of 0.701 and 0.627 and the r(2) values of 0.979 and 0.982, respectively. These statistically significant models were validated by a test set of five compounds. Comparison of CoMFA and CoMSIA contour maps helped to identify structural requirements for the inhibitors and serves as a basis for the design of the next generation of the inhibitor analogues. The results demonstrate that the combination of ligand-based and receptor-based modeling with use of a genetic algorithm is a powerful approach to build 3D-QSAR models. These data can be used for the lead optimization process with respect to inhibition enhancement which is important for the drug discovery and development for Alzheimer's disease.

摘要

已使用比较分子场分析(CoMFA)和比较分子相似性指数分析(CoMSIA),针对一系列结构相关的甾体生物碱作为丁酰胆碱酯酶(BuChE)抑制剂构建了三维定量构效关系(3D-QSAR)模型。采用对接研究将抑制剂定位到BuChE活性位点,以确定最可能的结合模式。该策略是在生成更可靠的3D-QSAR模型时探索多种抑制剂构象。这些多种构象是使用FlexS程序推导出来的。CoMFA的构象选择步骤通过遗传算法完成。发现基于遗传算法的CoMFA方法是最佳的。CoMFA和CoMSIA分别产生了显著的交叉验证q(2)值0.701和0.627以及r(2)值0.979和0.982。这些具有统计学意义的模型通过一组包含五种化合物的测试集进行了验证。CoMFA和CoMSIA等高线图的比较有助于确定抑制剂的结构要求,并为设计下一代抑制剂类似物提供依据。结果表明,基于配体和基于受体的建模与遗传算法的结合是构建3D-QSAR模型的有力方法。这些数据可用于在抑制增强方面的先导优化过程,这对于阿尔茨海默病的药物发现和开发很重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验