Suppr超能文献

利用分子相互作用指纹图谱评估骨架跳跃效率。

Assessment of scaffold hopping efficiency by use of molecular interaction fingerprints.

作者信息

Venhorst Jennifer, Núñez Sara, Terpstra Jan Willem, Kruse Chris G

机构信息

Solvay Pharmaceuticals, Research Laboratories, Weesp, The Netherlands.

出版信息

J Med Chem. 2008 Jun 12;51(11):3222-9. doi: 10.1021/jm8001058. Epub 2008 May 1.

Abstract

A novel scoring algorithm based on molecular interaction fingerprints (IFPs) was comparatively evaluated in its scaffold hopping efficiency against four virtual screening standards (GlideXP, Gold, ROCS, and a Bayesian classifier). Decoy databases for the two targets under examination, adenosine deaminase and retinoid X receptor alpha, were obtained from the Directory of Useful Decoys and were further enriched with approximately 5% of active ligands. Structure and ligand-based methods were used to generate the ligand poses, and a Tanimoto metric was chosen for the calculation of the similarity interaction fingerprint between the reference ligand and the screening database. Database enrichments were found to strongly depend on the pose generator algorithm. In spite of these dependencies, enrichments using molecular IFPs were comparable to those obtained with GlideXP, Gold, ROCS, and the Bayesian classifier. More interestingly, the molecular IFP scoring algorithm outperformed these methods at scaffold hopping enrichment, regardless of the pose generator algorithm.

摘要

一种基于分子相互作用指纹(IFP)的新型评分算法,针对四种虚拟筛选标准(GlideXP、Gold、ROCS和贝叶斯分类器),对其骨架跃迁效率进行了比较评估。所研究的两个靶点(腺苷脱氨酶和视黄酸X受体α)的诱饵数据库取自有用诱饵目录,并进一步用约5%的活性配体进行了富集。基于结构和配体的方法用于生成配体构象,并且选择了Tanimoto度量来计算参考配体与筛选数据库之间的相似性相互作用指纹。发现数据库富集强烈依赖于构象生成算法。尽管存在这些依赖性,但使用分子IFP的富集与使用GlideXP、Gold、ROCS和贝叶斯分类器所获得的富集相当。更有趣的是,无论构象生成算法如何,分子IFP评分算法在骨架跃迁富集方面都优于这些方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验