Sraitih Mohamed, Jabrane Younes, Hajjam El Hassani Amir
MSC Laboratory, Cadi Ayyad University, Marrakech 40000, Morocco.
Nanomedicine Imagery & Therapeutics Laboratory, EA4662-UBFC, UTBM, 90000 Belfort, France.
J Clin Med. 2021 Nov 22;10(22):5450. doi: 10.3390/jcm10225450.
The new advances in multiple types of devices and machine learning models provide opportunities for practical automatic computer-aided diagnosis (CAD) systems for ECG classification methods to be practicable in an actual clinical environment. This imposes the requirements for the ECG arrhythmia classification methods that are inter-patient. We aim in this paper to design and investigate an automatic classification system using a new comprehensive ECG database inter-patient paradigm separation to improve the minority arrhythmical classes detection without performing any features extraction. We investigated four supervised machine learning models: support vector machine (SVM), k-nearest neighbors (KNN), Random Forest (RF), and the ensemble of these three methods. We test the performance of these techniques in classifying: Normal beat (NOR), Left Bundle Branch Block Beat (LBBB), Right Bundle Branch Block Beat (RBBB), Premature Atrial Contraction (PAC), and Premature Ventricular Contraction (PVC), using inter-patient real ECG records from MIT-DB after segmentation and normalization of the data, and measuring four metrics: accuracy, precision, recall, and f1-score. The experimental results emphasized that with applying no complicated data pre-processing or feature engineering methods, the SVM classifier outperforms the other methods using our proposed inter-patient paradigm, in terms of all metrics used in experiments, achieving an accuracy of 0.83 and in terms of computational cost, which remains a very important factor in implementing classification models for ECG arrhythmia. This method is more realistic in a clinical environment, where varieties of ECG signals are collected from different patients.
多种类型的设备和机器学习模型的新进展为实用的自动计算机辅助诊断(CAD)系统提供了机会,使心电图分类方法在实际临床环境中切实可行。这对患者间的心电图心律失常分类方法提出了要求。本文旨在设计并研究一种自动分类系统,该系统使用新的综合患者间心电图数据库范式分离方法,在不进行任何特征提取的情况下,提高对少数心律失常类别的检测能力。我们研究了四种监督机器学习模型:支持向量机(SVM)、k近邻(KNN)、随机森林(RF)以及这三种方法的集成。我们使用来自MIT-DB的患者间真实心电图记录,在对数据进行分割和归一化后,测试这些技术在对正常搏动(NOR)、左束支传导阻滞搏动(LBBB)、右束支传导阻滞搏动(RBBB)、房性早搏(PAC)和室性早搏(PVC)进行分类时的性能,并测量四个指标:准确率、精确率、召回率和F1分数。实验结果强调,在不应用复杂的数据预处理或特征工程方法的情况下,使用我们提出的患者间范式,SVM分类器在实验中使用的所有指标方面均优于其他方法,准确率达到0.83,并且在计算成本方面,这在实施心电图心律失常分类模型时仍然是一个非常重要的因素。在从不同患者收集各种心电图信号的临床环境中,这种方法更具现实意义。