Suppr超能文献

一种基于最大间隔聚类和免疫进化算法的新型心电图心律失常自动检测系统。

A novel automatic detection system for ECG arrhythmias using maximum margin clustering with immune evolutionary algorithm.

机构信息

College of Information Sciences and Technology, Donghua University, Shanghai 201620, China.

出版信息

Comput Math Methods Med. 2013;2013:453402. doi: 10.1155/2013/453402. Epub 2013 Apr 18.

Abstract

This paper presents a novel maximum margin clustering method with immune evolution (IEMMC) for automatic diagnosis of electrocardiogram (ECG) arrhythmias. This diagnostic system consists of signal processing, feature extraction, and the IEMMC algorithm for clustering of ECG arrhythmias. First, raw ECG signal is processed by an adaptive ECG filter based on wavelet transforms, and waveform of the ECG signal is detected; then, features are extracted from ECG signal to cluster different types of arrhythmias by the IEMMC algorithm. Three types of performance evaluation indicators are used to assess the effect of the IEMMC method for ECG arrhythmias, such as sensitivity, specificity, and accuracy. Compared with K-means and iterSVR algorithms, the IEMMC algorithm reflects better performance not only in clustering result but also in terms of global search ability and convergence ability, which proves its effectiveness for the detection of ECG arrhythmias.

摘要

本文提出了一种新的基于免疫进化的最大间隔聚类方法(IEMMC),用于自动诊断心电图(ECG)心律失常。该诊断系统由信号处理、特征提取和用于 ECG 心律失常聚类的 IEMMC 算法组成。首先,原始 ECG 信号通过基于小波变换的自适应 ECG 滤波器进行处理,并检测 ECG 信号的波形;然后,从 ECG 信号中提取特征,通过 IEMMC 算法对不同类型的心律失常进行聚类。采用三种性能评估指标来评估 IEMMC 方法对 ECG 心律失常的效果,如灵敏度、特异性和准确性。与 K-均值和 iterSVR 算法相比,IEMMC 算法不仅在聚类结果方面表现出更好的性能,而且在全局搜索能力和收敛能力方面也表现出更好的性能,证明了其在 ECG 心律失常检测中的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/666a/3652208/469c66c0b128/CMMM2013-453402.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验