Suppr超能文献

基于绿色荧光蛋白的酿酒酵母中真核膜蛋白过表达与纯化优化方案。

GFP-based optimization scheme for the overexpression and purification of eukaryotic membrane proteins in Saccharomyces cerevisiae.

作者信息

Drew David, Newstead Simon, Sonoda Yo, Kim Hyun, von Heijne Gunnar, Iwata So

机构信息

Membrane Protein Crystallography Group, Division of Molecular Biosciences, Department of Life Sciences, Imperial College of London, London SW7 2AZ, UK.

出版信息

Nat Protoc. 2008;3(5):784-98. doi: 10.1038/nprot.2008.44.

Abstract

It is often difficult to produce eukaryotic membrane proteins in large quantities, which is a major obstacle for analyzing their biochemical and structural features. To date, yeast has been the most successful heterologous overexpression system in producing eukaryotic membrane proteins for high-resolution structural studies. For this reason, we have developed a protocol for rapidly screening and purifying eukaryotic membrane proteins in the yeast Saccharomyces cerevisiae. Using this protocol, in 1 week many genes can be rapidly cloned by homologous recombination into a 2 micro GFP-fusion vector and their overexpression potential determined using whole-cell and in-gel fluorescence. The quality of the overproduced eukaryotic membrane protein-GFP fusions can then be evaluated over several days using confocal microscopy and fluorescence size-exclusion chromatography (FSEC). This protocol also details the purification of targets that pass our quality criteria, and can be scaled up for a large number of eukaryotic membrane proteins in either an academic, structural genomics or commercial environment.

摘要

大量生产真核膜蛋白往往很困难,这是分析其生化和结构特征的主要障碍。迄今为止,酵母是用于高分辨率结构研究的生产真核膜蛋白最成功的异源过表达系统。因此,我们开发了一种在酿酒酵母中快速筛选和纯化真核膜蛋白的方案。使用该方案,在1周内许多基因可通过同源重组快速克隆到2微米绿色荧光蛋白(GFP)融合载体中,并使用全细胞和凝胶内荧光确定其过表达潜力。然后可在几天内使用共聚焦显微镜和荧光尺寸排阻色谱法(FSEC)评估过量生产的真核膜蛋白-GFP融合蛋白的质量。该方案还详细介绍了通过我们质量标准的靶标的纯化,并且可以在学术、结构基因组学或商业环境中扩大规模用于大量真核膜蛋白。

相似文献

3
High-throughput fluorescent-based optimization of eukaryotic membrane protein overexpression and purification in Saccharomyces cerevisiae.
Proc Natl Acad Sci U S A. 2007 Aug 28;104(35):13936-41. doi: 10.1073/pnas.0704546104. Epub 2007 Aug 20.
7
Expression and Purification of Membrane Proteins in Saccharomyces cerevisiae.
Methods Mol Biol. 2020;2127:47-61. doi: 10.1007/978-1-0716-0373-4_4.
8
GFP-based expression screening of membrane proteins in insect cells using the baculovirus system.
Methods Mol Biol. 2015;1261:197-209. doi: 10.1007/978-1-4939-2230-7_11.
10
Screening of stable G-protein-coupled receptor variants in Saccharomyces cerevisiae.
Methods Mol Biol. 2015;1261:159-70. doi: 10.1007/978-1-4939-2230-7_9.

引用本文的文献

1
Illuminating Glucomannan Synthases To Explore Cell Wall Synthesis Bottlenecks.
ACS Synth Biol. 2025 Jul 18;14(7):2472-2479. doi: 10.1021/acssynbio.5c00181. Epub 2025 Jul 8.
2
Stepwise ATP translocation into the endoplasmic reticulum by human SLC35B1.
Nature. 2025 May 21. doi: 10.1038/s41586-025-09069-w.
3
Structure and Inhibition of the Human Na/H Exchanger SLC9B2.
Int J Mol Sci. 2025 Apr 29;26(9):4221. doi: 10.3390/ijms26094221.
5
PIP-mediated oligomerization of the endosomal sodium/proton exchanger NHE9.
Nat Commun. 2025 Mar 28;16(1):3055. doi: 10.1038/s41467-025-58247-x.
7
8
Neurotransmitter recognition by human vesicular monoamine transporter 2.
Nat Commun. 2024 Sep 16;15(1):7661. doi: 10.1038/s41467-024-51960-z.
9
Challenges of Protein-Protein Docking of the Membrane Proteins.
Methods Mol Biol. 2024;2780:203-255. doi: 10.1007/978-1-0716-3985-6_12.
10
Copper resistance in the cold: Genome analysis and characterisation of a P ATPase in Bizionia argentinensis.
Environ Microbiol Rep. 2024 Aug;16(4):e13278. doi: 10.1111/1758-2229.13278.

本文引用的文献

1
Dissecting the ER-associated degradation of a misfolded polytopic membrane protein.
Cell. 2008 Jan 11;132(1):101-12. doi: 10.1016/j.cell.2007.11.023.
2
Crystal structure of the plasma membrane proton pump.
Nature. 2007 Dec 13;450(7172):1111-4. doi: 10.1038/nature06417.
3
Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment.
Nature. 2007 Nov 15;450(7168):376-82. doi: 10.1038/nature06265.
4
Structure of acid-sensing ion channel 1 at 1.9 A resolution and low pH.
Nature. 2007 Sep 20;449(7160):316-23. doi: 10.1038/nature06163.
5
Structural determination of wild-type lactose permease.
Proc Natl Acad Sci U S A. 2007 Sep 25;104(39):15294-8. doi: 10.1073/pnas.0707688104. Epub 2007 Sep 19.
6
Exceptional overproduction of a functional human membrane protein.
Protein Expr Purif. 2007 Nov;56(1):110-20. doi: 10.1016/j.pep.2007.07.007. Epub 2007 Aug 10.
7
High-throughput fluorescent-based optimization of eukaryotic membrane protein overexpression and purification in Saccharomyces cerevisiae.
Proc Natl Acad Sci U S A. 2007 Aug 28;104(35):13936-41. doi: 10.1073/pnas.0704546104. Epub 2007 Aug 20.
9
Crystal structure of inhibitor-bound human 5-lipoxygenase-activating protein.
Science. 2007 Jul 27;317(5837):510-2. doi: 10.1126/science.1144346. Epub 2007 Jun 28.
10
Membrane chaperone Shr3 assists in folding amino acid permeases preventing precocious ERAD.
J Cell Biol. 2007 Feb 26;176(5):617-28. doi: 10.1083/jcb.200612100.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验