Norton Gareth J, Nigar Meher, Williams Paul N, Dasgupta Tapash, Meharg Andrew A, Price Adam H
Department of Plant and Soil Science, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 3UU, UK.
J Exp Bot. 2008;59(8):2277-84. doi: 10.1093/jxb/ern098. Epub 2008 May 2.
In this study, the genetic mapping of the tolerance of root growth to 13.3 muM arsenate [As(V)] using the BalaxAzucena population is improved, and candidate genes for further study are identified. A remarkable three-gene model of tolerance is advanced, which appears to involve epistatic interaction between three major genes, two on chromosome 6 and one on chromosome 10. Any combination of two of these genes inherited from the tolerant parent leads to the plant having tolerance. Lists of potential positional candidate genes are presented. These are then refined using whole genome transcriptomics data and bioinformatics. Physiological evidence is also provided that genes related to phosphate transport are unlikely to be behind the genetic loci conferring tolerance. These results offer testable hypotheses for genes related to As(V) tolerance that might offer strategies for mitigating arsenic (As) accumulation in consumed rice.
在本研究中,利用BalaxAzucena群体改进了对13.3微摩尔砷酸盐[As(V)]的根系生长耐受性的遗传定位,并鉴定了可供进一步研究的候选基因。提出了一个显著的三基因耐受模型,该模型似乎涉及三个主要基因之间的上位性相互作用,其中两个位于6号染色体上,一个位于10号染色体上。从耐受亲本遗传而来的这些基因中的任意两个的组合都会使植株具有耐受性。列出了潜在的位置候选基因。然后利用全基因组转录组学数据和生物信息学对其进行优化。还提供了生理学证据,表明与磷转运相关的基因不太可能是赋予耐受性的遗传位点背后的原因。这些结果为与As(V)耐受性相关的基因提供了可检验的假设,这些基因可能为减轻食用水稻中的砷(As)积累提供策略。