Nechaev Sergei, Geiduschek E Peter
Division of Biological Sciences and Center for Molecular Genetics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA.
J Mol Biol. 2008 Jun 6;379(3):402-13. doi: 10.1016/j.jmb.2008.03.071. Epub 2008 Apr 7.
Activated transcription of the bacteriophage T4 late genes is generated by a mechanism that stands apart from the common modalities of transcriptional regulation: the activator is gp45, the viral replisome's sliding clamp; two sliding-clamp-binding proteins, gp33 and gp55, replace the host RNA polymerase (RNAP) sigma subunit. We have mutagenized, reconfigured and selectively disrupted individual interactions of the sliding clamp with gp33 and gp55 and have monitored effects on transcription. The C-terminal sliding-clamp-binding epitopes of gp33 and gp55 are perfectly interchangeable, but the functions of these two RNAP-sliding clamp connections differ: only the gp33-gp45 linkage is essential for activation, while loss of the gp55-gp45 linkage impairs but does not abolish activation. Formation of transcription-ready promoter complexes by the sliding-clamp-activated wild-type T4 RNAP resists competition by high concentrations of the polyanion heparin. This avid formation of promoter complexes requires both linkages of the T4 late RNAP to the sliding clamp. Preopening the promoter compensates for loss of the gp55-gp45 but not the gp33-gp45 linkage. We interpret the relationship of these findings and our prior analysis to the common model of transcriptional initiation in bacteria in terms of two parallel pathways, with two RNAP holoenzymes and two DNA templates: (1) gp55-RNAP and the T4 late promoter execute basal transcription; (2) gp55-gp33-RNAP and the T4 late promoter with its mobile enhancer, the T4 sliding clamp, execute activated transcription. gp55 and gp33 perform sigma-like functions, gp55 in promoter recognition and gp33 (as well as gp55) in enhancer recognition. gp33 operates the switch between these two pathways by repressing basal transcription.
噬菌体T4晚期基因的激活转录是通过一种有别于转录调控常见方式的机制产生的:激活因子是gp45,即病毒复制体的滑动夹;两种滑动夹结合蛋白gp33和gp55取代了宿主RNA聚合酶(RNAP)的σ亚基。我们对滑动夹与gp33和gp55之间的个体相互作用进行了诱变、重新配置并选择性破坏,并监测了对转录的影响。gp33和gp55的C末端滑动夹结合表位完全可互换,但这两种RNAP-滑动夹连接的功能不同:只有gp33-gp45连接对于激活是必不可少的,而gp55-gp45连接的缺失会损害但不会消除激活。滑动夹激活的野生型T4 RNAP形成转录就绪的启动子复合物可抵抗高浓度多聚阴离子肝素的竞争。这种启动子复合物的强烈形成需要T4晚期RNAP与滑动夹的两种连接。预开放启动子可补偿gp55-gp45连接的缺失,但不能补偿gp33-gp45连接的缺失。我们根据两条平行途径,即两种RNAP全酶和两种DNA模板,来解释这些发现以及我们之前对细菌转录起始常见模型的分析之间的关系:(1)gp55-RNAP和T4晚期启动子执行基础转录;(2)gp55-gp33-RNAP和带有其移动增强子(T4滑动夹)的T4晚期启动子执行激活转录。gp55和gp33发挥类似σ因子的功能,gp55负责启动子识别,gp33(以及gp55)负责增强子识别。gp33通过抑制基础转录来操控这两条途径之间的转换。