Laboratory of Molecular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
Proc Natl Acad Sci U S A. 2011 Dec 13;108(50):19961-6. doi: 10.1073/pnas.1113328108. Epub 2011 Dec 1.
Activated transcription of the bacteriophage T4 late genes, which is coupled to concurrent DNA replication, is accomplished by an initiation complex containing the host RNA polymerase associated with two phage-encoded proteins, gp55 (the basal promoter specificity factor) and gp33 (the coactivator), as well as the DNA-mounted sliding-clamp processivity factor of the phage T4 replisome (gp45, the activator). We have determined the 3.0 Å-resolution X-ray crystal structure of gp33 complexed with its RNA polymerase binding determinant, the β-flap domain. Like domain 4 of the promoter specificity σ factor (σ(4)), gp33 interacts with RNA polymerase primarily by clamping onto the helix at the tip of the β-flap domain. Nevertheless, gp33 and σ(4) are not structurally related. The gp33/β-flap structure, combined with biochemical, biophysical, and structural information, allows us to generate a structural model of the T4 late promoter initiation complex. The model predicts protein/protein interactions within the complex that explain the presence of conserved patches of surface-exposed residues on gp33, and provides a structural framework for interpreting and designing future experiments to functionally characterize the complex.
噬菌体 T4 晚期基因的激活转录与同时进行的 DNA 复制偶联,由一个起始复合物完成,该复合物包含与两个噬菌体编码蛋白 gp55(基本启动子特异性因子)和 gp33(共激活因子)以及噬菌体 T4 复制体的 DNA 滑动夹连酶的转录酶相关的宿主 RNA 聚合酶。我们已经确定了 gp33 与 RNA 聚合酶结合决定因素β-瓣结构域的 3.0 Å 分辨率 X 射线晶体结构。与启动子特异性σ因子(σ(4))的结构域 4 一样,gp33 主要通过夹住β-瓣结构域尖端的螺旋与 RNA 聚合酶相互作用。然而,gp33 和 σ(4)在结构上没有关系。gp33/β-瓣结构与生化、生物物理和结构信息相结合,使我们能够生成 T4 晚期启动子起始复合物的结构模型。该模型预测了复合物内的蛋白质/蛋白质相互作用,解释了 gp33 表面暴露残基保守区域的存在,并为解释和设计未来的实验提供了一个结构框架,以功能表征该复合物。