非线性有限元分析:牙科应用中的进展与挑战
Nonlinear finite element analyses: advances and challenges in dental applications.
作者信息
Wakabayashi N, Ona M, Suzuki T, Igarashi Y
机构信息
Department of Removable Prosthodontics, School of Dentistry, Iwate Medical University, 1-3-27 Chuodori, Morioka, Iwate 020-8580, Japan.
出版信息
J Dent. 2008 Jul;36(7):463-71. doi: 10.1016/j.jdent.2008.03.010. Epub 2008 May 2.
OBJECTIVES
To discuss the development and current status of application of nonlinear finite element method (FEM) in dentistry.
DATA AND SOURCES
The literature was searched for original research articles with keywords such as nonlinear, finite element analysis, and tooth/dental/implant. References were selected manually or searched from the PUBMED and MEDLINE databases through November 2007.
STUDY SELECTION
The nonlinear problems analyzed in FEM studies were reviewed and categorized into: (A) nonlinear simulations of the periodontal ligament (PDL), (B) plastic and viscoelastic behaviors of dental materials, (C) contact phenomena in tooth-to-tooth contact, (D) contact phenomena within prosthodontic structures, and (E) interfacial mechanics between the tooth and the restoration.
CONCLUSIONS
The FEM in dentistry recently focused on simulation of realistic intra-oral conditions such as the nonlinear stress-strain relationship in the periodontal tissues and the contact phenomena in teeth, which could hardly be solved by the linear static model. The definition of contact area critically affects the reliability of the contact analyses, especially for implant-abutment complexes. To predict the failure risk of a bonded tooth-restoration interface, it is essential to assess the normal and shear stresses relative to the interface. The inclusion of viscoelasticity and plastic deformation to the program to account for the time-dependent, thermal sensitive, and largely deformable nature of dental materials would enhance its application. Further improvement of the nonlinear FEM solutions should be encouraged to widen the range of applications in dental and oral health science.
目的
探讨非线性有限元法在牙科学中的发展及应用现状。
资料与来源
检索文献以查找有关非线性、有限元分析以及牙齿/牙体/种植体等关键词的原创研究文章。参考文献通过手动筛选或截至2007年11月从PUBMED和MEDLINE数据库中检索获得。
研究选择
对有限元研究中分析的非线性问题进行综述并分类为:(A)牙周膜的非线性模拟;(B)牙科材料的塑性和粘弹性行为;(C)牙齿与牙齿接触中的接触现象;(D)口腔修复结构内的接触现象;(E)牙齿与修复体之间的界面力学。
结论
牙科学中的有限元法最近集中于模拟逼真的口腔内状况,如牙周组织中的非线性应力-应变关系以及牙齿中的接触现象,而这些用线性静态模型几乎无法解决。接触面积的定义对接触分析的可靠性有至关重要的影响,尤其是对于种植体-基台复合体。为预测粘结的牙齿-修复体界面的失败风险,评估相对于界面的法向应力和剪应力至关重要。在程序中纳入粘弹性和塑性变形以考虑牙科材料的时间依赖性、热敏感性以及较大的可变形性,将增强其应用。应鼓励进一步改进非线性有限元法的解决方案,以拓宽其在口腔健康科学中的应用范围。