使用骨移植和牙槽窝屏障技术即刻种植体的生物力学行为:三维有限元分析
Biomechanical behavior of immediately placed implant using bone graft and socket shield techniques: a 3D finite element analysis.
作者信息
Rashwan Reham A, AbdElkader Sanaa H, Elkersh Noha M, AboElhassan Rewaa G
机构信息
Department of Conservative Dentistry, Division of Fixed Prosthodontics, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.
Department of Oral Medicine, Periodontology, Oral Diagnosis and Oral Radiology, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.
出版信息
Head Face Med. 2025 Aug 13;21(1):59. doi: 10.1186/s13005-025-00537-2.
BACKGROUND
Recently, several techniques for immediate implant placement have gained popularity, offering numerous advantages. These include the preservation of bone around the tooth socket and enhanced aesthetics. Nonetheless, the biomechanical behavior of implants and peri-implant tissues under immediate loading with these techniques remains uncertain. This study examines stress distribution surrounding an immediately placed implant, using socket shield and bone graft techniques compared to a healed socket.
MATERIALS AND METHODS
Cone-beam computed tomography (CBCT) scans of the anterior maxilla were used to construct finite element analysis (FEA) models. The process of modeling the implant, abutment, and provisional crown used standard tessellation language (STL) files of the original components. The implant was modeled in three clinical scenarios: a healed socket (HS), an extraction socket with bone graft (BG), and a socket shield (SS). A frictional contact (µ = 0.3) was established to simulate immediate loading. An axial load of 25.5 N and a non-axial load of 178 N at a 30° angle were applied along the implant's long axis in a palatal direction. FEA was conducted for stress distribution analysis.
RESULTS
In evaluating maximum principal, von Mises stress distribution within the cortical bone, the HS model exhibited the highest stress level, with a maximum of 125 MPa, 127 MPa, respectively. The SS model demonstrated the lowest stress, recording a maximum of 82 MPa, 90.7 MPa, respectively, while the BG model had a maximum value of 115 MPa, 116.84 MPa, respectively. When assessing the von Mises stress distribution associated with the implant, the HS model recorded the highest stress value of 385 MPa. In contrast, the BG and SS models recorded lower stress values of 252 MPa and 281 MPa, respectively.
CONCLUSIONS
The socket shield technique exhibits advantageous biomechanical performance under immediate loading conditions by reducing stress on peri-implant bone and implant components. These results endorse its clinical applicability but necessitate further in vivo validation.
背景
最近,几种即刻种植技术受到了广泛欢迎,具有诸多优势。这些优势包括保留牙槽窝周围的骨质以及提升美观度。尽管如此,采用这些技术即刻加载时种植体及种植体周围组织的生物力学行为仍不明确。本研究通过使用牙槽窝屏障和骨移植技术,并与愈合后的牙槽窝进行比较,来研究即刻植入种植体周围的应力分布情况。
材料与方法
使用上颌前部的锥形束计算机断层扫描(CBCT)图像构建有限元分析(FEA)模型。种植体、基台和临时冠的建模过程使用原始部件的标准镶嵌语言(STL)文件。种植体在三种临床情况下进行建模:愈合后的牙槽窝(HS)、植骨的拔牙窝(BG)和牙槽窝屏障(SS)。建立摩擦接触(μ = 0.3)以模拟即刻加载。沿种植体长轴在腭侧方向施加25.5 N的轴向载荷和与长轴呈30°角的178 N的非轴向载荷。进行有限元分析以进行应力分布分析。
结果
在评估皮质骨内的最大主应力、冯·米塞斯应力分布时,HS模型显示出最高的应力水平,分别为最大值125 MPa、127 MPa。SS模型显示出最低的应力,分别记录为最大值82 MPa、90.7 MPa,而BG模型的最大值分别为115 MPa、116.84 MPa。在评估与种植体相关的冯·米塞斯应力分布时,HS模型记录的最高应力值为385 MPa。相比之下,BG和SS模型记录的应力值较低,分别为252 MPa和281 MPa。
结论
牙槽窝屏障技术在即刻加载条件下通过降低种植体周围骨和种植体部件上的应力,展现出有利的生物力学性能。这些结果支持其临床适用性,但需要进一步的体内验证。