Suppr超能文献

回归分析支持噬菌体T4中复制叉处理的两种机制。

Regression supports two mechanisms of fork processing in phage T4.

作者信息

Long David T, Kreuzer Kenneth N

机构信息

Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA.

出版信息

Proc Natl Acad Sci U S A. 2008 May 13;105(19):6852-7. doi: 10.1073/pnas.0711999105. Epub 2008 May 2.

Abstract

Replication forks routinely encounter damaged DNA and tightly bound proteins, leading to fork stalling and inactivation. To complete DNA synthesis, it is necessary to remove fork-blocking lesions and reactivate stalled fork structures, which can occur by multiple mechanisms. To study the mechanisms of stalled fork reactivation, we used a model fork intermediate, the origin fork, which is formed during replication from the bacteriophage T4 origin, ori(34). The origin fork accumulates within the T4 chromosome in a site-specific manner without the need for replication inhibitors or DNA damage. We report here that the origin fork is processed in vivo to generate a regressed fork structure. Furthermore, origin fork regression supports two mechanisms of fork resolution that can potentially lead to fork reactivation. Fork regression generates both a site-specific double-stranded end (DSE) and a Holliday junction. Each of these DNA elements serves as a target for processing by the T4 ATPase/exonuclease complex [gene product (gp) 46/47] and Holliday junction-cleaving enzyme (EndoVII), respectively. In the absence of both gp46 and EndoVII, regressed origin forks are stabilized and persist throughout infection. In the presence of EndoVII, but not gp46, there is significantly less regressed origin fork accumulation apparently due to cleavage of the regressed fork Holliday junction. In the presence of gp46, but not EndoVII, regressed origin fork DSEs are processed by degradation of the DSE and a pathway that includes recombination proteins. Although both mechanisms can occur independently, they may normally function together as a single fork reactivation pathway.

摘要

复制叉在常规情况下会遇到受损的DNA和紧密结合的蛋白质,从而导致叉停滞和失活。为了完成DNA合成,有必要去除阻碍叉前进的损伤并重新激活停滞的叉结构,这可以通过多种机制实现。为了研究停滞叉重新激活的机制,我们使用了一种模型叉中间体,即起源叉,它是在从噬菌体T4起源ori(34)进行复制的过程中形成的。起源叉以位点特异性的方式在T4染色体中积累,无需复制抑制剂或DNA损伤。我们在此报告,起源叉在体内被加工以产生一个倒退叉结构。此外,起源叉倒退支持两种叉解析机制,这两种机制可能会导致叉重新激活。叉倒退会产生一个位点特异性双链末端(DSE)和一个霍利迪连接体。这些DNA元件分别作为T4 ATP酶/核酸外切酶复合物[基因产物(gp)46/47]和霍利迪连接体切割酶(EndoVII)加工的靶点。在同时缺乏gp46和EndoVII的情况下,倒退的起源叉会被稳定下来,并在整个感染过程中持续存在。在存在EndoVII但不存在gp46的情况下,明显由于倒退叉霍利迪连接体的切割,倒退的起源叉积累显著减少。在存在gp46但不存在EndoVII的情况下,倒退的起源叉DSE会通过DSE的降解和一个包括重组蛋白的途径进行加工。虽然这两种机制可以独立发生,但它们通常可能作为一个单一的叉重新激活途径共同发挥作用。

相似文献

1
Regression supports two mechanisms of fork processing in phage T4.
Proc Natl Acad Sci U S A. 2008 May 13;105(19):6852-7. doi: 10.1073/pnas.0711999105. Epub 2008 May 2.
2
An antitumor drug-induced topoisomerase cleavage complex blocks a bacteriophage T4 replication fork in vivo.
Mol Cell Biol. 2000 Jan;20(2):594-603. doi: 10.1128/MCB.20.2.594-603.2000.
3
Fork regression is an active helicase-driven pathway in bacteriophage T4.
EMBO Rep. 2009 Apr;10(4):394-9. doi: 10.1038/embor.2009.13. Epub 2009 Mar 6.
4
Direct observation of stalled fork restart via fork regression in the T4 replication system.
Science. 2012 Nov 30;338(6111):1217-20. doi: 10.1126/science.1225437.
5
Plasmid models for bacteriophage T4 DNA replication: requirements for fork proteins.
J Virol. 1992 Dec;66(12):6960-8. doi: 10.1128/JVI.66.12.6960-6968.1992.
6
The phage T4 protein UvsW drives Holliday junction branch migration.
J Biol Chem. 2007 Nov 23;282(47):34401-11. doi: 10.1074/jbc.M705913200. Epub 2007 Sep 5.
8
Response of the bacteriophage T4 replisome to noncoding lesions and regression of a stalled replication fork.
J Mol Biol. 2010 Sep 3;401(5):743-56. doi: 10.1016/j.jmb.2010.06.027. Epub 2010 Jun 25.
9
Bacteriophage T4 helicase loader protein gp59 functions as gatekeeper in origin-dependent replication in vivo.
J Biol Chem. 2005 Jun 3;280(22):21561-9. doi: 10.1074/jbc.M502351200. Epub 2005 Mar 21.

引用本文的文献

1
The telomerase reverse transcriptase elongates reversed replication forks at telomeric repeats.
Sci Adv. 2023 Mar 22;9(12):eadf2011. doi: 10.1126/sciadv.adf2011.
2
Replication fork uncoupling causes nascent strand degradation and fork reversal.
Nat Struct Mol Biol. 2023 Jan;30(1):115-124. doi: 10.1038/s41594-022-00871-y. Epub 2023 Jan 2.
4
Replication Fork Reversal during DNA Interstrand Crosslink Repair Requires CMG Unloading.
Cell Rep. 2018 Jun 19;23(12):3419-3428. doi: 10.1016/j.celrep.2018.05.061.
7
Replication fork reversal in eukaryotes: from dead end to dynamic response.
Nat Rev Mol Cell Biol. 2015 Apr;16(4):207-20. doi: 10.1038/nrm3935. Epub 2015 Feb 25.
8
Recombination and replication.
Cold Spring Harb Perspect Biol. 2014 Oct 23;6(11):a016550. doi: 10.1101/cshperspect.a016550.
9
DNA damage responses in prokaryotes: regulating gene expression, modulating growth patterns, and manipulating replication forks.
Cold Spring Harb Perspect Biol. 2013 Nov 1;5(11):a012674. doi: 10.1101/cshperspect.a012674.
10

本文引用的文献

1
Replication fork reversal occurs spontaneously after digestion but is constrained in supercoiled domains.
J Biol Chem. 2007 Jun 22;282(25):18190-18196. doi: 10.1074/jbc.M701559200. Epub 2007 Apr 23.
2
Mus81 cleavage of Holliday junctions: a failsafe for processing meiotic recombination intermediates?
EMBO J. 2007 Apr 4;26(7):1891-901. doi: 10.1038/sj.emboj.7601645. Epub 2007 Mar 15.
3
Deregulated replication licensing causes DNA fragmentation consistent with head-to-tail fork collision.
Mol Cell. 2006 Nov 3;24(3):433-43. doi: 10.1016/j.molcel.2006.09.010.
4
RuvABC is required to resolve holliday junctions that accumulate following replication on damaged templates in Escherichia coli.
J Biol Chem. 2006 Sep 29;281(39):28811-21. doi: 10.1074/jbc.M603933200. Epub 2006 Aug 7.
5
Bacteriophage T4 helicase loader protein gp59 functions as gatekeeper in origin-dependent replication in vivo.
J Biol Chem. 2005 Jun 3;280(22):21561-9. doi: 10.1074/jbc.M502351200. Epub 2005 Mar 21.
7
Replication protein A and the Mre11.Rad50.Nbs1 complex co-localize and interact at sites of stalled replication forks.
J Biol Chem. 2004 Aug 13;279(33):34802-10. doi: 10.1074/jbc.M404750200. Epub 2004 Jun 4.
8
RNase-sensitive DNA modification(s) initiates S. pombe mating-type switching.
Genes Dev. 2004 Apr 1;18(7):794-804. doi: 10.1101/gad.289404.
9
Swi1 prevents replication fork collapse and controls checkpoint kinase Cds1.
Mol Cell Biol. 2003 Nov;23(21):7861-74. doi: 10.1128/MCB.23.21.7861-7874.2003.
10
Endonuclease cleavage of blocked replication forks: An indirect pathway of DNA damage from antitumor drug-topoisomerase complexes.
Proc Natl Acad Sci U S A. 2003 Apr 29;100(9):5046-51. doi: 10.1073/pnas.0835166100. Epub 2003 Apr 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验