Suppr超能文献

蛋白质信息:用于增强蛋白质结构预测的新算法。

PROTINFO: new algorithms for enhanced protein structure predictions.

作者信息

Hung Ling-Hong, Ngan Shing-Chung, Liu Tianyun, Samudrala Ram

机构信息

Computational Genomics Group, Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA.

出版信息

Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W77-80. doi: 10.1093/nar/gki403.

Abstract

We describe new algorithms and modules for protein structure prediction available as part of the PROTINFO web server. The modules, comparative and de novo modelling, have significantly improved back-end algorithms that were rigorously evaluated at the sixth meeting on the Critical Assessment of Protein Structure Prediction methods. We were one of four server groups invited to make an oral presentation (only the best performing groups are asked to do so). These two modules allow a user to submit a protein sequence and return atomic coordinates representing the tertiary structure of that protein. The PROTINFO server is available at http://protinfo.compbio.washington.edu.

摘要

我们描述了作为PROTINFO网络服务器一部分提供的用于蛋白质结构预测的新算法和模块。这些模块,即比较建模和从头建模,具有显著改进的后端算法,这些算法在蛋白质结构预测方法关键评估的第六次会议上经过了严格评估。我们是受邀进行口头报告的四个服务器团队之一(只有表现最佳的团队才会被要求这样做)。这两个模块允许用户提交蛋白质序列,并返回代表该蛋白质三级结构的原子坐标。PROTINFO服务器可通过http://protinfo.compbio.washington.edu访问。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b0f/1160164/2c5e4df58134/gki403f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验