Suppr超能文献

一种用于蛋白质比较建模的多模板组合算法。

A multi-template combination algorithm for protein comparative modeling.

作者信息

Cheng Jianlin

机构信息

Department of Computer Science, Informatics Institute, University of Missouri, Columbia, MO 65211-2060, USA.

出版信息

BMC Struct Biol. 2008 Mar 17;8:18. doi: 10.1186/1472-6807-8-18.

Abstract

BACKGROUND

Multiple protein templates are commonly used in manual protein structure prediction. However, few automated algorithms of selecting and combining multiple templates are available.

RESULTS

Here we develop an effective multi-template combination algorithm for protein comparative modeling. The algorithm selects templates according to the similarity significance of the alignments between template and target proteins. It combines the whole template-target alignments whose similarity significance score is close to that of the top template-target alignment within a threshold, whereas it only takes alignment fragments from a less similar template-target alignment that align with a sizable uncovered region of the target. We compare the algorithm with the traditional method of using a single top template on the 45 comparative modeling targets (i.e. easy template-based modeling targets) used in the seventh edition of Critical Assessment of Techniques for Protein Structure Prediction (CASP7). The multi-template combination algorithm improves the GDT-TS scores of predicted models by 6.8% on average. The statistical analysis shows that the improvement is significant (p-value < 10-4). Compared with the ideal approach that always uses the best template, the multi-template approach yields only slightly better performance. During the CASP7 experiment, the preliminary implementation of the multi-template combination algorithm (FOLDpro) was ranked second among 67 servers in the category of high-accuracy structure prediction in terms of GDT-TS measure.

CONCLUSION

We have developed a novel multi-template algorithm to improve protein comparative modeling.

摘要

背景

在蛋白质结构预测中,多模板法是一种常用的人工预测方法。然而,目前能自动选择并组合多个模板的算法却很少。

结果

我们开发了一种有效的蛋白质比较建模多模板组合算法。该算法根据模板与目标蛋白比对的相似性显著性来选择模板。它会组合那些相似性显著性得分在阈值范围内且接近最优模板-目标比对得分的完整模板-目标比对,而对于相似度较低的模板-目标比对,仅采用与目标蛋白较大未覆盖区域比对的比对片段。我们将该算法与在蛋白质结构预测技术关键评估(CASP7)第七版中使用的45个比较建模目标(即基于模板的简单建模目标)上使用单一最优模板的传统方法进行了比较。多模板组合算法使预测模型的GDT-TS得分平均提高了6.8%。统计分析表明这种提高具有显著性(p值<10-4)。与始终使用最佳模板的理想方法相比,多模板方法的性能仅略优。在CASP7实验中,多模板组合算法的初步实现(FOLDpro)在基于GDT-TS度量的高精度结构预测类别中,在67个服务器中排名第二。

结论

我们开发了一种新型多模板算法来改进蛋白质比较建模。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2173/2311309/7cb44fe1eb22/1472-6807-8-18-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验